Saturday, December 17, 2022

Glyphosate Poisoning: The impact of 50 years of agricultural toxicity on human health: A review of current scientific evidence and reviewed by Dr Shiksha Gallow (PHD, DMed, MMed, MBA, MMedSci, PrNatSci) Holistic Integrative Medical Practioner

1. Introduction

Glyphosate is the main ingredient in the most over-used agricultural chemical in the world and its dangers to human health and the environment are now well established. The purpose of this paper is to present a collection of the most up-to-date scientific citations as evidence of the serious life-threatening health and environmental hazards of this dangerous and toxic chemical that is sprayed over all of our food and even in non-agricultural zones everywhere in the world. It is found in the soil, air, water and food and it is said that today, no one can escape the effects of glyphosate, not even on the North Pole! The truth is that all non organic farmers are using glyphosate and there is only one certified organic grain farmer in South Africa, and that is Mr Bertie Coetzee from Prieska.

Glyphosate is now found in all of our food, in human breast milk and our drinking water supplies, ground and surface. Glyphosate is sprayed onto all crops that we eat as well as onto the food that animals consume, which also then becomes the food for humans. This dangerous poison bioaccumulates in humans and animals and unfortunately glyphosate is not killed in the cooking process, just like arsenic is not boiled off of tap or groundwater supplies. 

People living with poisoned water are still suffering the effects of arsenic, mercury and lead poisoning. And this is the epicentre of all that is now known as ‘auto-immune’ and people are suffering slow and painful deaths while doctors scratch their heads and say that they do not know what is causing these conditions.

 

2. The corporate battle for control of the world’s food system...

Corporations control the entire agricultural academic arena by funding their research as well as other activities. And this is exactly how agricultural students are brainwashed into believing that glyphosate is necessary for good agricultural practice. This is a trap that has caused farmers world-wide to lose their freedoms.

Today it is known that 99% of the soya and 84% of the maize grown in South Africa is genetically modified (GMO) meaning that these plants are engineered to withstand glyphosate that kills all Non-GMO plants.

 

3.Why is glyphosate so dangerous?

The entire Earth’s topsoil has been depleted of nutrients over the past 30 years because of the chelation and antibiotic activities of glyphosate. Chelation is the process whereby nutrients bond to substances in this case glyphosate because it was intentionally engineered to strip the nutrients out of the soil.

 

4. How does glyphosate affect the human gut biome?

To highlight the length of time dedicated to glyphosate, we must learn that this product was first patented in 1964 as a chelator for removing unwanted chemical deposits from drain pipes. Ten years later it was patented as a herbicide and then in 2010 the corporation known as Bayer Monsanto managed to be awarded a patent for glyphosate as an antibiotic due to its ‘antimicrobial properties’.

It is the antibiotic properties of glyphosate that actually leads to the death of the plant. Just like the overuse of antibiotics can kill the good bacteria in the human gut-biome, so too in plants glyphosate kills the beneficial bacteria like bifidobacterium and lactobacilli that plants and animals depend on.

Glyphosate not only kills the good guys, it also enhances the powers of the bad guys like clostridium, phythothera, pithium as well as rhizotonia. These are the pathogens that actually kill the plants. It is interesting to note that all children diagnosed with autism have elevated levels of clostridia in their tested faeces.

In other words, this constant exposure to glyphosate alters the bacteria population from beneficial to pathogenic. The same thing is happening in the human gut biome and this is why we now have the situation where 1 in every 3 humans is ill. In my opinion, glyphosate is the main driver for the antibiotic resistance that we are seeing today. [674-677]This is also why I say that glyphosate causes parasitic infections in humans and these parasites feed off of human food and the heavy metals from the herbicides and fertilisers that are sprayed over our food crops. So it makes perfect sense that the real manifestation of the deathly danger that is organophosphate poisoning… will be in the human gut. Parasites, viruses (especially the Epstein-Barr virus) and other pathogens can also cross the umbilical cord from mother to baby during pregnancy.

Parasitic infections are fast becoming an epidemic of their own proportions. Where before only people in the rural areas used to pick up parasites, now everyone living in cities and slums has parasites whether they wish to admit it or not and this is just one of the root causes of the radical increase in chronic disease especially in the youth. The reason for this increase in parasitic infections is two-fold: due to the increase and overuse of glyphosate, and the fact that these parasites are capable of crossing the blood brain barrier, the gut-brain barrier and the umbilical cord. [678-680]

 

5. What is the Shikimate Pathway?

The shikimate pathway is the central metabolic route leading to formation of tryptophan (TRP), tyrosine (TYR), and phenylalanine (PHE). This pathway exclusively exists in plants and microorganisms (Kayser and Averesch, 2015 ). A key enzyme of shikimate pathway (5-enolpyruvylshikimate-3-phosphate synthase, EPSPS) is the target of the widely used herbicide glyphosate.

The main reason why corporations claim that glyphosate is safe for humans is because they believe that humans do not possess the shikimate pathway as plants do.

This pathway in plants, ensures that essential minerals are converted into amino acids that are crucial to the plants immune system and therefore health. Glyphosate disrupts the shikimatic acid pathway and this results in the death of the plant in 4 to 20 days. [681-683] 

Gut bacteria and plants use the shikimate pathway entirely to produce the amino acids required to produce crucial biologically active molecules like serotonin, melatonin, melanin, epinephrine, dopamine, thyroid hormone, folate and coenzyme Q10. Take note that most of these molecules are hormones and that the gut produces almost 90% of these molecules in the human body as well as our B vitamins that are also crucial to brain health. Heavy metals like arsenic feed off of our B vitamins and once depleted this in turn can stop the body’s production of red blood cells and this can lead to cerebral hypoxia due to lack of oxygen circulating to the brain.

 

6. Shikimates control our ability to produce these critical amino acids that also affect brain chemistry

Glyphosate disrupts the shikimate pathway causing severe harm to our gut bacteria that further affects the entire body. [678]

Therefore a damaged shikimate pathway can basically shut down the health of the microbiome causing more degeneration and more ‘auto-immune’ diseases.

This also means that we will struggle to detoxify heavy metals and because shikimates are precursors to dopamine this means that we can also experience severe depression and anxiety.

Please bear in mind that the medical field have not been completely honest with us before about body parts they did not think we needed to know about. For example the entire Endocannabinoid System (cannabinoid receptors) that now turns out to be the body’s super-computer and in fact regulates all of our other systems…the Chakra System and its alignment to the endocrine system and the petchoti gland (found behind the belly button) to name a few, so I have no doubt that all humans have a fully functional and active shikimate pathway and this is the reason why we have such alarming statistics of colon cancer, celiac disease, bowel obstruction conditions etc….it’s all because of the ill-effects of glyphosate.

And as for ‘gluten intolerance’….there is nothing different about gluten except for the ongoing chronic overuse of glyphosate through crop spraying.

How else do you explain millions of people ‘suddenly’ becoming intolerant to gluten? It’s the increased anaerobic fermentation in the gut that leads to altered amines, phenols, hydrogen sulphide and ammonia by-products that are toxic to the colon and create inflammation and this leads to the leaky gut and obviously food intolerances. It is worth knowing that the gut wall is only about 3.5 mm thick.

The gastrointestinal tract is so important that it even has its own nervous system, known as the Enteric nervous system. As mentioned before and worthy of repetition, the gut produces over 90% of serotonin and other hormones, far more than the brain does. The GI tract plays an important role in the control and function of the thyroid gland. Glyphosate disrupts all of these gut functions as well as disrupting endocrine activities and the thyroid gland is very much part of the endocrine system. [684- 690]

A 2004 study in the Journal of Toxicology titled “Glyphosate Poisoning” the following is revealed: Ingestion of >85 ml of the concentrated formulation is likely to cause significant toxicity in adults. Gastrointestinal corrosive effects, with mouth, throat and epigastric pain and dysphagia are common. Renal and hepatic impairment are also frequent and usually reflect reduced organ perfusion. Respiratory distress, impaired consciousness, pulmonary oedema, infiltration on chest x-ray, shock, arrythmias, renal failure requiring haemodialysis, metabolic acidosis and hyperkalaemia may supervene in severe cases. Bradycardia and ventricular arrhythmias are often present pre-terminally. Dermal exposure to ready-to-use glyphosate formulations can cause irritation and photo-contact dermatitis has been reported occasionally; these effects are probably due to the preservative Proxel (benzisothiazolin-3-one).

Severe skin burns are very rare. Inhalation is a minor route of exposure but spray mist may cause oral or nasal discomfort, an unpleasant taste in the mouth, tingling and throat irritation. Eye exposure may lead to mild conjunctivitis, and superficial corneal injury is possible if irrigation is delayed or inadequate. Management is symptomatic and supportive, and skin decontamination with soapand water after removal of contaminated clothing should be undertaken in cases of dermal exposure.” [1-5]

In conclusion, this case report emphasises that glyphosate poisoning could be life-threatening. There is no antidote for this herbicide poisoning.[6-14]

Glyphosate poisoning also affects human respiration and destroys lung tissue and is even found in human breast milk. [12, 15] There is no part of the body that is safe from the toxic effects of this substance and its metabolites. The heart, lungs, liver, eyes, kidneys, gut, brain, bladder, fertility organs, in fact all of our biological systems are at huge risk and death is inevitable.

The spectrum of GlySH poisoning includes minimal irritation of eyes too severe as shock and death.[11, 16] Severe poisoning causes dehydration, hypotension, pneumonitis, oliguria, altered level of consciousness, hepatic dysfunction, acidosis, hyperkalemia, and dysrhythmias.[17]

Studies reveal that glyphosate toxicity is not new information and scientists have known about the dangers since the beginning of the 1980’s at the very least and the issue remains of what has been done to prevent the use of this dangerous chemical.

Even though glyphosate was first synthesised in 1950, it was only patented much later and 1974 was the first year of commercialisation of glyphosate and in that year the consumption was approximately 3000 tons increasing to more than 825 000 tons by 2014. Scientists predict that in the next few years 1 million tons of glyphosate usage could be achieved, if not already exceeded.  All known foodstuffs are sprayed with glyphosate, fruit, vegetables, herbs, nuts, cereals, grains and even beer and honey,contain glyphosate and even in small amounts this chemical causes huge problems for humans and animals.

According to Farmer Angus of Stellenbosch, South Africa, every single loaf of bread sold in South Africa is contaminated with glyphosate, especially whole-wheat bread. The only exception is the organic loaves baked by Fritz Schoon of Stellenbosch. If you do some research you will quickly realise that glyphosate side effects are a lot like celiac disease and so-called ‘gluten intolerance’. The occurrence of glyphosate in ground and surface water worldwide is also well established over the past 45 years. We must never make the mistake in believing that corporations were not aware of the deathly dangers of their creation and there is no longer any doubt that their creation was engineered to cause harm.

Between 1978 and 1986 they conducted experiments on rats, mice and dogs to test the toxicity of glyphosate. These studies were submitted to the US Environmental Protection Agency (EPA), but were not allowed in the public domain! They did however release some memos from the early 1980’s showing noteworthy kidney damage in rats together with early signs of tumour formation.

And then in 1991 one of these EPA memos revealed that their experts knew long before 1985 that glyphosate caused pancreatic, thyroid and kidney tumours. Despite all this evidence the EPA insists that glyphosate is safe for human health when used in accordance with the instructions. The problem is that it is they (US EPA and corporations), who are not following instructions and completely overusing these toxins all in the pursuit of profit and with almost zero regard for environmental or human safety.

In 1991 Talbot et al carried out a study of 93 cases of glyphosate poisoning where exposure occurred between January 1980 and 30 September 1989 [18] This study itself presented with 100 citations as evidence of the extreme dangers of glyphosate poisoning to human health, yet the corporations and their scientists continue to insist that “more research is needed”. [19-63]

 

7. Corporate corruption and new industry standards fail the future of life on Earth….

It is important to be aware of the type of research we are depending on because it is no secret that a lot of these studies are paid for by the herbicide industry who controlcommercial interests even in the face of controversy over safety concerns for human health. This is why we still amazingly find so-called ‘authentic’ science papers stating that glyphosate is perfectly safe and does not cause cancer. Glyphosate is now classified in Group 2A meaning it is a ‘probable human carcinogen’, yet it is only recognised in non-hodgkins lymphoma. To this day corporations refuse to recognise this classification stating that there is insufficient evidence. Regardless of what the corporations say, we have hundreds of citations that prove the opposite. [64-91]The scientists at The Indian Journal of Critical Care Medicine have this to say about glyphosate poisoning and this quotation has been cited many times by other scientists:

“It can cause a wide range of clinical manifestations in human beings like skin and throat irritation to hypotension, oliguria and death.” [92-130]

Glyphosate is neurotoxic with serious effects on the nervous system of animals and humans. There is currently no shortage of scientific evidence to support the claim that glyphosate causes several neurotoxic effects especially in the early stages of life where it seriously affects normal cell development by disrupting signalling pathways involved in cell development. It also exerts toxic effects on neurotransmission, oxidative stress, neuroinflammation and mitochondrial dysfunction and these are all processes that lead to the death of brain cells due to autophagy, necrosis or apoptosis.

It is important to note that the doses of glyphosate that produce these effects vary greatly but it is interesting that these dosage levels are in fact lower than the limits set by the regulation agencies.

The evidence is blatantly clear that glyphosate causes important changes in the structure and function of the nervous system in humans, fish, rats and invertebrates. Glyphosate can cross the Blood-Brain-Barrier and this is how it is able to cause various types of long or short-term disturbances in the human nervous system. [131, 132]

 

8. Glyphosate not only crosses the Blood-Brain-Barrier, it can also easily cross the placenta and directly reach the baby

In the in vitro study by Masood et al, scientists noted that glyphosate has the ability to alter gene expression and this appears to be another mechanism of glyphosate-induced neurotoxicity. Also important to note is that glyphosate does not only affect postnatal neural development but can also alter neurogenesis (the creation of new brain cells) during adulthood. [134-205]

 

9. Glyphosate is also responsible for multi-organ-failure

In a 2017 study the scientists led by Edoardo Picetti, who is an anaesthesiologist and intensivist (ICU) and has 93 published works to his name, concluded as follows:

In conclusion, this case report confirms that glyphosate ingestion may be associated with rapid onset of multiple organ failure (MOF). Since an antidote is currently unavailable, major focus should be placed on aggressive life-support care and careful monitoring of complications.”[206-215]

Today glyphosate is omni-present in our food, water, soil and air and this means that it is then frequently ingested by humans and regularly found in our blood and urine and especially in employees and farmers working with glyphosate. Numerous studies carried out prove that farm workers and their families exposed to glyphosate have significant differences in the levels of glyphosate in their urine before and after application of the poison in the field after periods of up to 6 hours. These same tests were also carried out on lactating women and the results were the same. This highlights the potent persistence of glyphosate and its ability to bioaccumulate and this means definite health risk and almost certain death.

A 2020 study published in the Journal of Immunology and Toxicology presented evidence that the effects of glyphosate on the immune system of fish appear to alter function and lymphocyte response, as well as increasing the pro-inflammatory cytokines. The impact of glyphosate on the human immune system is evident in the radical increase in asthma and so-called ‘auto-immuneconditions. [216-240]

Considering the fact that the average daily diet of most is abundant in glyphosate as well as other pesticides and nutrient deficient (from soil depletion), one can appreciate that chronic dosing of glyphosate will result in an underperforming immune system that is unable to meet the challenges of modern day infections.”  Dr Shiksha Gallow (PhD, DMed, MMed, MBA, MMed Sci, Pr Nat Sci)

 

10. Glyphosate is responsible for vitamin D deficiency and bone-loss conditions like osteoporosis

Vitamin D deficiency is now also an epidemic everywhere in the world even in places where the sun shines. In a large population study in America, Bodnar et al, found that 83% of black women were deficient in vitamin D as well as 92% of their newborn babies. In white women 47% were deficient and 66% of their newborns. This was despite the fact that over 90% of the women on the studywere taking prenatal vitamins. (In chapter 17 of my book The Human Companion Plant I explain why people of colour struggle with vitamin D deficiency).

Vitamin D deficiency is strongly associated with an increased risk to bone fractures due to impaired calcium homeostasis, especially in young children. The situation is so bad that care-givers are being falsely accused of abusing small children who suffer from bone fractures due to impaired bone development. Many scientists believe that this vitamin D epidemic is caused by glyphosate because it interferes with Cytochrome (CYP) enzymes (that is a family of ‘super enzymes responsible for vital life functions especially hormone secretion and absorption). But the biggest problem with bone development is impaired manganese homeostasis and glyphosate totally depletes manganese deposits. [695-704]

 

11. Glyphosate is so dangerous that it is a favourite means of suicide in the absence of guns

In America the choice of suicide is guns because they are so easily available. But in South Asia people are poor and resort to the next most effective method of taking one’s own life by using pesticides and in particular, glyphosate.

An alarming 20% of all suicides in the South of Asia involve glyphosate and just 85 ml of a concentrated formulation will ensure significant toxicity in adults. Death occurs by a combination of pulmonary oedema accompanied by progressive hypotension (low blood pressure) either with tachycardia (high heart rate) or Bradycardia (low heart rate). There is often a certain alteration in the level of consciousness followed by shock and sadly death despite medical care. 

The mechanisms of death by intentional poisoning are the complete disruption of cell membranes including the mitochondria and the uncoupling of oxidative phosphorylation that scientists believe may be inter-related. If scientists could better understand these mechanisms then surely they might be able to develop an antidote.

Doctors need to be aware that ingestion of glyphosate can lead to severe organ injury and ultimately failure by causing hyperkalemia (high blood potassium) that leads to heart attack, and may lead to death. All research on this topic indicates that ‘cardiovascular collapse’ is a major cause of death after glyphosate exposure and patients respond poorly to conventional therapy. Also very important to realise is thatglyphosate doesn’t only cause toxicity after ingestion, but also after dermal exposure, inhalation as well as eye exposure. [241-296]

 

12.As a known Endocrine Disruptor, how does glyphosate affect our children?

One of the saddest papers I have read is by Sorensen and Gregersen (1999) that tells the story of a 6 year old boy who died from taking just a mouthful of glyphosate.

A simple Google search on this topic will reveal at least 8 full pages of NIH scientific citations regarding child exposure to glyphosate and thousands of seasonal urine tests all over the world to prove this exposure among our youth. [387]

Even though farmers and their families and employees are the most affected by glyphosate poisoning, scientists are now discovering that this toxin is being found in the ‘biological fluids’ of populations that are not agricultural at all. This is a massive concern because clearly the problem is greater than originally anticipated.

In 2021 Rodriguez et al published a study in the journal Frontiers in Endocrinology where the authors included different kinds of articles including an original article by Gorga et al, 2 reviews and 3 mini-reviews. All of these articles look at various study models;

related to female and male reproduction, reproductive outcomes, hormonal balance and the epigenome addressed by specialists in their fields.”

Results revealed that exposure to glyphosate causes decreased sperm concentration in rodent studies. In the mini-review by Rossetti et al authors summarise current evidence about epigenetic modifications induced by glyphosate in both human and rodent cells. [388]

 

13. At the heart of child exposure to glyphosate is prenatal exposure during pregnancy

This is exactly where the endocrine disruption begins, in the womb. It is well hypothesised that children with autism spectrum disorder (ASD) have lower levels of the hormones Ghrelin compared to children without ASD. This proves that hormones do modulate the pathogenesis of autism and together with exposure to heavy metals found in glyphosate products, ensure a life of mental health issues for far too many unborn children. And it’s not only mental health conditions that endocrine disruptors can cause. [389-401]

Children born predisposed to these conditions because of in-utero toxicity can also have other endocrine conditions like diabetes, cholesterol, obesity, cardiac, bone-marrow, reproductive disorders e.g. prostrate and uterine tumours, kidney and liver issues,thyroid problems, vascular problems, delayed or early onset of puberty, epilepsy, tumours, and even gastro-intestinal complications. It is obvious now that glyphosate exposure during pregnancy contributes to low birth weight, and now it is known that low birth weight leads to cardiac complications. [616-620]

A 2021 Endocrine study revealed that the percentage of obese children aged 2-5 years had doubled from 5 to 13% and quadrupled in ages 12-19 from 5 to 20.6%. The study states that there are currently,

an estimated 107.7 million children worldwide under the age of 20 that are considered obese, including those under the age of 2.” [632-635]

 

14. Does glyphosate cause autism?

Because glyphosate can affect neurogenesis, this means that it can lead to the development of neurodegenerative conditions like MS, Parkinson’s disease, Amyotrophic lateral sclerosis (ALS), Alzheimer’s and dementia, autism, behavioural conditions, Huntington’s disease, Spinal Muscular atrophy and Lewy Body disease, Bell’s Palsy as well as epilepsy and other seizure conditions.

These studies also reveal a very real relationship between exposure during pregnancy and childhood, and an increased risk of developing disorders that are on the autism spectrum. In my opinion the reason for this is the presence of heavy metals in glyphosate.  (And I feel the exact same way about menopause and over the past decade or so, more and more women everywhere in the world are suddenly experiencing prolonged menopausal symptoms when this is completely unnatural because menopause only lasts 12 months. Glyphosate and heavy metals cause ‘flashing’.)

Autism is associated with gut inflammation and “leaky gut” due to the damage to the delicately thin gut lining that is less than 4 mm thick. We know that glyphosate destroys our gut bacteria and this causes leaky gut and leaky gut means leaky brain. Glyphosate crosses and destroys the blood-brain-barrier as well as the gut-brain-barrier. [671-673]

Anxiety disorder is a serious co-morbidity of autism due to the disruption of our good bacteria caused by glyphosate. It is known that heavy metals contribute to heavy anxiety and autism. Anxiety disorder is also associated with glyphosate use on corn and soy foodstuffs. [691-694]

 

15. Autism also presents as impaired sulphate metabolism

This is the cause of the autism that I was born with, together with a severehypersensitivity to sulphates, sulphites and sulphur. This hypersensitivity is linked to my chronic arsenic toxicity in my non-vascular tissues that masquerades as Rheumatoid Arthritis (closely associated with autism) that I was diagnosed with in 1976 aged 7 years old. My mother also received her autism and arsenic poisoning via the umbilical cord from my grandmother in the same way. Arsenic has a high affinity for sulphites and sulphur and this the link between heavy metals and autism. All of this can be contained within a cluster of inter-generational glyphosate-induced damage to human gut bacteria and the subsequent results on the blood stream. [414, 473, 508, 529, 551, 599, 621, 631]

 

16. It is known that MSG literally fries the human brain and is a huge player in autism spectrum disorders

You might find it strange to read that the flavour enhancer MSG, created in 1929, that is well known for inducing obesity, cancer and other metabolic disorders due to its toxic effects, has since 1998 been authorised by the American EPA to be sprayed on crops with no restrictions. [636-639]

According to Dr Stephani Seneff Senior Research Scientist from Massachusetts Institute of Technology, “by 2025 1 in 2 children will be autistic.” Her studies reveal that glyphosate destroys the human blood-brain-barrier. This is what she has to say about MSG toxicity:

“As I said, the glutamate is very interesting because glyphosate disrupts the body’s ability to metabolise glutamate, so the glutamate becomes toxic and gets into the brain.”
http://www.ageofautism.com/2014/12/dr-stephanie-seneff-senior-mit-research-scientiston-vaccine-safety.html

It is not only food additives but also agrochemicals that contaminate food and this has been linked to obesity in animals and in humans. This topic has been intensively reviewed elsewhere and the proof is solid that obesity also leads to autism and other mental health disorder, and the worst part of all of this is that corporations have always known about these deadly side-effects and they have been allowed by the wicked laws of the lands to continue their agenda that ensures that greedy corporations will continue to profit at the expense of the general population. [640-660]

In their 2020 paper, Ingaramo P et al, share the main reason for why glyphosate is an endocrine disruptor;

“The main mechanism described associated with the endocrine-disrupting effect of GBHs is the modulation of oestrogen receptors and molecules involved in the oestrogen pathways.” [402]

In her June 2021 paper titled “The EU Endocrine Disruptors’ Regulating and the Glyphosate Controversy” Dr Paraskevi Kalofiri removes any doubt we might have to the dangers of endocrine disruptors;

“It is established that Endocrine Disruptors (EDs), constitute one of the most serious risks to human health as they severely disrupt the endocrine system. This risk is largely linked with, among others, the problem of identification of the various chemical substances contained in a wide range of man-made products such as pesticides, biocides, cosmetics, plastics, paints, construction materials, and other items used daily. EDs also occur naturally such as in hormones and plant oestrogens.”

 

17. Further on in her paper, as final confirmation, she confirms the link between glyphosate and adverse endocrine activity

“Therefore, it can be concluded that glyphosate acts as an ED that modifies hormonal activity and causes defects in the reproductive process and in progeny. Also, according to Paola Ingaramo et al., there is a correlation between endocrine activity caused by glyphosate/GBHs and the adverse effects on female reproduction.

Several studies have shown the presence of endocrine disruption, whether this may be caused by glyphosate alone or by products that this substance is contained in, depending on substance levels and exposure time.

It should be stressed at this point that certain products are protected by patent laws, and thus, their ingredients are unknown. For the precise reason that there is a difference between the measured effects of an active substance in the laboratory and those observed in the interactive environments in which the substance is used, risk regulators should review their procedures so that assessment methods take into account realistic conditions.”

The biggest problem with these man-made endocrine disruptors is that they mimic our endogenous hormones like the oestrogens and androgens. They wreak havoc byupsetting and altering the synthesis and metabolism of natural hormones and their receptors. [403]

Here is the World Health Organisation’s (WHO) definition of endocrine disruptors:

“An endocrine disruptor is an exogenous substance or mixture that alters function(s) of the endocrine system and consequently causes adverse health effects in an intact organism, or its progeny, or (sub) populations”

According to the European Commission the only requirement to determine whether a chemical substance is an endocrine disruptor, is that this substance disrupts the endocrine systemregardless of the extent of the disruption.

This requirement is now accepted by the entire international scientific community and should be common knowledge to citizens who are affected. [404-446]

The real dangers of glyphosate poisoning will probably never really be known, but we certainly have enough evidence in 2022 of the evils of this substance. [447-470]

Many studies indicate that there are associations between glyphosate and immune-endocrine disruptions that target the sex and thyroid hormones.  Although there is far more evidence of endocrine disruption properties of glyphosate than there is for immunotoxicity, the overall outcome of research certainly highlights lethal effects like lung inflammation, asthma, rhinitis and sinusitis.

I truly believe that the concerning increase in asthma (especially in children) is due to the over-use of sulphites in the herbicides due to the arsenic content in the products. Nothing about this substance or any of its formulations is safe for consumption by any life form. It is true that scientific papers are boring but honestly I do urge all readers to take some time and read a few of these papers to get a clearer perspective and a point of reference for understanding the magnitude of Organophosphate Poisoning.  [471-528]

In their 2021 publication in the journal Frontiers in Endocrinology Volume 12, the authors present some alarming evidence as follows:

In vitro and ex vivo human placental perfusion experiments have shown that glyphosate is able to cross the placenta. In addition to that, glyphosate levels have been detected not only in serum of pregnant women at childbirth (0.2-189.1 µg/l), but also in umbilical cord samples (0.2-94.9 µg/l) which support the idea that glyphosate can reach the foetus. [530]

Moreover,more than 90% pregnant women residing in both rural and urban areas (75) were reported to have detectable levels of glyphosate. Based onthis data, the herbicide glyphosate could affect the mother and child during pregnancy.” [529-535]

“An issue of particular concern regarding glyphosate and its formulations is the effect on offspring and subsequent generations in both animals and humans. Inthis section, we will address the effects on health of successive generations after maternal exposure to glyphosate or GBHs, even though paternal exposure is also an important factor. “

Researchers found shocking results on the F0 and F1 generations that showed higher incidence of histological abnormalities in different organs like the prostrate, testes, kidneys and ovaries.

In their conclusion the authors leave us with this message:

“So, in this scenario, our role as scientists is to show the evidence to the scientific community, but also, to make known what is reported in the literature to the general community.Through this way, we will be able to dialogue, educate and raise awareness on the risks of excessive use of these pesticides mainly of those who manipulate the herbicide formulations or are responsible directly or indirectly of their use. Also, it is important that people take into account potential acute effects, but also long-term effects and possible impact on the health of subsequent generations; emphasising on the health care of women preconceptionally and during pregnancy (especially those who could be occupationally exposed to higher levels than general population).

Although there is extensive accumulated experimental evidence about the negative impact of glyphosate and GBHs on pregnancy outcomes, there are just a few epidemiological studies on reproductive health to arrive at conclusive definitions. Therefore, it is urged that more assessments will be a priority at this stage and we are focusing our efforts on this issue.” [536-670]

 

18. Will glyphosate ever be fully banned from Earth?

Of the 193 countries recognised by the UN only 28 have officially banned or restricted the use of glyphosate. In 2021 Germany declared that it will issue its final ban in 2024. What are they waiting for? More profits or more deaths? This is sad when you look at the mountain of evidence to support the deathly dangers of this product to humans, plants and animals, and especially the soil that built the Earth.

Of even greater concern is the fact that glyphosate is now simply being replaced with new toxins as we can see in Europe where glyphosate is being replaced by acetic, pelargonic or capric acids and even benzalkonium which are supposed to be safer substances, but are they?

Earlier on I mentioned that it is my opinion that the reason for the increase in autism is due to the presence of heavy metals in herbicides and pesticides. To be frank, I feel the exact same way about ‘auto-immune’ diseases. I do not believe that the human body ‘attacks itself’, but I do believe that we are all being poisoned by our governments whom we are supposed to look up to for protection.

If doctors and scientists for the past 100 years are still unable to explain why the body ‘attacks itself’, then surely we are looking in the wrong place to answer medical mysteries. Now is the time to own up to all the doctoral deceit and admit that the reason the body attacks itself is because of decades of chronic poisoning. The body reacts to foreign substances that are not meant to be in the body, so the medical corporations have taken the perfectly natural biological mechanism of protection and repackaged it as a ‘medical condition’ and sold it right back to us.

Studies reveal that these supposedly new and safer herbicides contain up to 35 heavy metals including arsenic, lead, iron and others at levels of up to 39 mg/l. Due to embedded nanoparticles found in herbicides and pesticides the presence of heavy metals is a couple of hundred times the permitted levels in water. These levels already violate the rules on these products issued by the European Union. This is a massive concern and citizens need to be more wide awake now than ever before. [297-338]

 

19. Worldwide failure of glyphosate regulation ensures that corporations will always control the world’s food supply by poisoning the populations

Here in South Africa we are no strangers to the modern idea of corruption that is running rampant on Earth, all in the name of greed and supplying mankind’s need for profit. All nations are now captured. So many studies have found the harm to human health and the environment, so it is obviously crucial to regulate the use of these toxins.

You will be forgiven for thinking that these regulations seem to be designed to only further their industry rather than to consider any kind of protection to humans or the Earth. Since 1997 the majority of South Africans have been consuming genetically modified food (GMO’s) without their knowledge or permission. To this day you still cannot read about glyphosate on any food labels or packaging.

 

20. People have no idea what they are eating or that they are being forced to eat genetically modified food that is spiked with toxins

This is the way of the profit system and it knows no limits to satisfy its hunger for profit and power and we see so much of this scenario where the responsible parties constantly and unashamedly violate their own rules. Not only do they break their own rules but they also rely heavily on unpublished industry sponsored studies to further their cause. By now the whole world is corrupted and captured by unprofessional conduct and mismanagement from conflicts of interest. [339-386]

We now know too well that it is the laws of the lands that give power to unethical behaviour, and the laws, and lack thereof surrounding organophosphate poisoning of the nations and the Earth are completely outdated. Legislation has not been properly reviewed since 1947. The 2010 Pesticide Management Policy of DAFF (Department of Agriculture, Forestry and Fisheries) fails in providing adequate measures to monitor environmental impact studies. This policy also does not allow for the protection of non-target areas like residential and school areas, for example.

Even though our right to safe drinking water is enshrined in our constitution, our laws barely pay attention to the protection of our water sources. The National Water Act (Act 36 of 1998) requires that the Minister of Water Affairs must put in place systems to manage and control our country’s water resources.

So you will be shocked to realise that actually, there are no water quality standards to protect our freshwater systems or indigenous freshwater organisms from glyphosate toxicity. Our water laws have not even considered a Maximum Residue level for this poison in our waters. Why is this? No one can answer this, but we do know that both The Department of Water Affairs and CSIR (Council for Scientific and Industrial Research) claim to have conducted projects for monitoring pesticides in South Africa although none of them seemed to have focused on glyphosate?

Researchers at Rhodes University have been trying to complete this knowledge gap by using studies of Fresh-water shrimp as a biomarker for the potential damage of glyphosate in aquatic systems in our country. Their initial results showed that even low levels of glyphosate can adversely affect this species. I have almost the same amount of citations for environmental impacts as I do for this paper on human impact.

We can no longer allow world governments to get away with these blatant and arrogant wicked acts upon our people who are becoming more ill by the day. Glyphosate poisoning is an ignored epidemic that needs immediate and urgent care because weed killers are not supposed to kill humans and animals as well. Have you noticed theradical increase in domestic pets like cats and dogs now suffering from the same ailments as humans?

And we should not have to be consuming poisonous genetically modified food because the weed killers are so poisonous we now need varieties that are tolerant to glyphosate like all our maize, cotton and soya bean crops.

It’s incredibly frustrating to realise that it is almost impossible to find accurate figures of pesticide or herbicide applications in South Africa. This is because the industry association Crop Life South Africa apparently ‘no longer keeps statistics on this topic.’ And neither does DAFF!

As citizens we have the right to be informed of these unsafe agricultural practices by our government. They have no right to withhold this information from us and they also have no right to poison us or to conduct research on us without our permission. The biggest problem is that we do not know our rights and we do not know what the laws actually say because we have not taken the time to educate ourselves. This is how we as a worldwide society have become completely complacent in our acceptance of all that could actually end up killing us and future generations, let alone the Earth.

Surely the time has come that we realise that spraying large quantities of antibiotics will eventually kill the soil and all of life of Earth? Can you believe that the annual use of glyphosate antibiotic exceeds the use (over use) of all other antibiotics combined together? This is shocking and there is no legislation to control these corporations in the wild west of modern day farming.

The real question is why is this poison still being sprayed over our food and even our homes? Is it because we are totally just accepting it and shrugging our shoulders in despair because we really don’t know what to do!

The solution to this problem starts in your own street where you live, and it starts with education. Everyone must meet in their town halls, libraries, car parks, wherever you can meet with your town councillors who have to take responsibility.

They must receive our petitions that will achieve critical mass, and take it further up the ranks of authority until it gets to the top to the law makers and then to parliament to please the people. The only way to solve this problem is to change the laws. Initiatives like this one is how we keep this issue in the public domain.

 

“It’s important that we take our health into our own hands. Too often many people feel their health is in their doctor’s hands. The time is now to educate yourself and educate others. In addition, we all need to remember we are responsible for this beautiful planet and future generations.” Dr Shiksha Gallow (PhD, DMed, MBA, MMedSci, Pr Nat Sci)

CITATIONS AND REFERENCES FOR GLYPHOSATE POISONING PAPER (704)

[1] (Sally M Bradberry, Alex T Proudfoot and J Allister Vale,  2004) “Glyphosphate poisoning” Toxicology Rev Journal 2004 Volume 23 Issue 3 pages 159 – 67 PMID: 15862083 https://pubmed.ncbi.nlm.nih.gov › 15862083

[2] (Williams Gm, Kroes R, Munro IC, April 2000) “Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans.” Journal Regul Toxicology Pharmacol Volume 21 Issue 2 pages 117-65 PMID: 10854122

[3] (Lee HL, Kan CD, Tsai Cl, Liou MJ, Guo HR August 2009) “Comparative effects of the formulation of glyphosate-surfactant herbicides on hemodynamics in swine.” Journal Clnical Toxicology (Phila) Volume 47 Issue 7 pages 651-8) PMID: 19663613

[4] (Kamijo Y, Takai M, Sakamoto T, 2016) “A multicenter retrospective survey of poisoning after ingestion of herbicides containing glyphosate potassium salt or other glyphosate salts in Japan.” Journal Clinical Toxicology (Phila) Volume 54 Issue 2 pages 147-51 PMID: 26691886

[5] (Sidthilaw S et al, February 2022) “Effects of exposure to glyphosate on oxidative stress, inflammation, and lung function in maize farmers, Northern Thailand.  Journal BMC Public Health Volume 22 Issue 1 page 1343 PMID: 35836163

[6] (T Kunapareddy, 3 February 2021) “Glyphosphate poisoning – a case report”. Journal of Postgraduate Medicine Volume 67 Issue 1 pages 36-38 PMCID: PMC8098880 PMID: 33533750 https://www.ncbi.nlm.nih.gov>articles>PMC8098880

[7] (Peixoto F, 2005) “Comparative effects of the Roundup and glyphosate on mitochondrial oxidative phosphorylation.” Journal Chemoshere Volume 61 pages 1115–22

[8] (Beswick E, Millo J, 2011) “Fatal poisoning with glyphosate-surfactant herbicide.” Journal Intensive Care Soc Volume 12 pages 37–9. 

[9] (Picetti E, Generali M, Mensi F, Neri G, Damia R, Lippi G, et al 2018) “Glyphosate ingestion causing multiple organ failure: A near-fatal case report.” Journal Acta Biomed Volume 88 pages 533–7. 

[10] (Moon JM, Chun BJ, 2010) “Predicting acute complicated glyphosate intoxication in the emergency department.” Journal Clinical Toxicology Volume 48 pages 718–24. 

[11] (Lee CH, Shih CP, Hsu KH, Hung DZ, Lin CC, 2008) “The early prognostic factors of glyphosate-surfactant intoxication.” American Journal of Emergency Medicine Volume 26 pages 275-81 

[12] (Kim YH, Lee JH, Cho KW, Lee DW, Kang MJ, Lee KY, et al, 2016) “Prognostic factors in emergency department patients with glyphosate surfactant intoxication: Point-of-care lactate testing” Journal Basic Clinical Pharmacology and Toxicology Volume 119 pages 604–10. 

[13] (Kim YH, Lee JH, Hong CK, Cho KW, Park YH, Kim YW, et al, 2014) “Heart rate–corrected QT interval predicts mortality in glyphosate-surfactant herbicide–poisoned patients”. American Journal of Emergency Medicine Volume 32 pages 203-7

[14] (Mahendrakar K, Venkategowda PM, Rao SM, Mutkule DP, 2014) “Glyphosate surfactant herbicide poisoning and management.” Indican Journal of Critical Care Medicine Volume 18 pages 328-30

[15] (Thaku DS et al, 21 September 2014) “Glyphosate Poisoning with Acute Pulmonary Edema” Journal Toxicology International Volume 21 Issue 3 pages 328-330. PMCID: PMC4413421 PMID: 25948977 https://www.ncibi.nlm.nih.gov>articles>PMC4413421

[16] (Beswick E, Millo, 2011) “Fatal poisoning with GlySH surfactant herbicide.” Journal Iran Chem Soc Volume 12 pages 37–9

 [17] (Adams RD, Good AM, Bateman DN, 2005) “Edinburgh, UK: National Poisons Information Service; Report: Pesticide Exposure. Monitoring Using NPIS Resources”

[18] (Talbot AR et al, January 1991) “Acute poisoning with a glyphosate-surfactant herbicide (Roundup”): a review of 93 cases” Journal Hum Exp Toxicol Volume 10 Issue 1 pages 1-8 PMID: 1673618 https://pubmed.ncbi.nlm.nih.gov>articles>PMID:1673618

[19] (Davoren M.J., Schiestl R.H, 2018) “Glyphosate-based herbicides and cancer risk: A post-IARC decision review of potential mechanisms, policy and avenues of research.”  Journal Carcinogenesis. Volume 39 pages 1207–1215.

[20] (Williams G.M., Kroes R., Munro I.C 2000) “Safety Evaluation and Risk Assessment of the Herbicide Roundup and Its Active Ingredient, Glyphosate, for Humans.” Journal Regul. Toxicol. Pharmacol. Volume 31 pages 117–165.

 

[21] (Tarazona J.V., Court-Marques D., Tiramani M., Reich H., Pfeil R., Istace F., Crivellente F, 2017) “Glyphosate toxicity and carcinogenicity: A review of the scientific basis of the European Union assessment and its differences with IARC.” Journal Arch. Toxicol. Volume 91 pages :2723–2743. doi: 10.1007/s00204-017-1962-5. 

 [22] (Chiesa L.M., Nobile M., Panseri S., Arioli F, 2019) “Detection of glyphosate and its metabolites in food of animal origin based on ion-chromatography-high resolution mass spectrometry.” Journal Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. Volume 36 pages 592–600. doi: 10.1080/19440049.2019.1583380. 

[23] (Bai S.H., Ogbourne S.M, 2016) “Glyphosate: Environmental contamination, toxicity and potential risks to human health via food contamination.” Journal Environ. Sci. Pollut. Res. Volume 23 pages 18988–19001. doi: 10.1007/s11356-016-7425-3. 

[24] (Oliveira P.C., Maximiano E.M., Oliveira P.A., Camargo J.S., Fiorucci A.R., Arruda G.J, 2018) “Direct electrochemical detection of glyphosate at carbon paste electrode and its determination in samples of milk, orange juice, and agricultural formulation.” Journal Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes. Volume 53 pages 817–823. doi: 10.1080/03601234.2018.1505081. 

[25] (Wumbei A., Goeteyn L., Lopez E., Houbraken M., Spanoghe P, 2019) “Glyphosate in yam from Ghana.” Journal Food Addit. Contam. Part B Surveill. Volume 12 pages 231–235. doi: 10.1080/19393210.2019.1609098. 

[26] EFSA Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate. EFSA J. 2016;13 doi: 10.2903/j.efsa.2015.4302

[27] (Van Bruggen A.H.C., He M.M., Shin K., Mai V., Jeong K.C., Finckh M.R., Morris J.G, 22018) “Environmental and health effects of the herbicide glyphosate.” Journal Sci. Total Environ. Volume 616–617 pages 255–268. doi: 10.1016/j.scitotenv.2017.10.309. 

[28] (Agostini L.P., Dettogni R.S., dos Reis R.S., Stur E., dos Santos E.V.W., Ventorim D.P., Garcia F.M., Cardoso R.C., Graceli J.B., Louro I.D. 2020) “Effects of glyphosate exposure on human health: Insights from epidemiological and in vitro studies.” Journal Sci. Total Environ. 2020;705:135808. doi: 10.1016/j.scitotenv.2019.135808. 

 [29] IARC Glyphosate . IARC Monographs on the Evaluation of Carcinogenic Risks to Humans-Volume 112: Some Organophosphate Insecticides and Herbicides. Volume 112. Agência Internacional para a Investigação do Cancro; Lyon, France: 2017. pp. 321–412. 

[30] (Conrad A., Schröter-Kermani C., Hoppe H.W., Rüther M., Pieper S., Kolossa-Gehring M, 2016) “Glyphosate in German adults–Time trend (2001 to 2015) of human exposure to a widely used herbicide.” Int. J. Hyg. Environ. Health. 2017;220:8–16. doi: 10.1016/j.ijheh.2016.09.016. 

[31] (Zoller O., Rhyn P., Rupp H., Zarn J.A., Geiser C, 2018) “Glyphosate residues in Swiss market foods: Monitoring and risk evaluation.” Journal Food Addit. Contam. Part B Surveill. 2018;11:83–91. doi: 10.1080/19393210.2017.1419509. 

[32]  (Van Eenennaam A.L., Young A.E, 2016) “Detection of dietary DNA, protein, and glyphosate in meat, milk, and eggs.” Journal. Anim. Sci. 2017;95:3247–3269. doi: 10.2527/jas2016.1346. 

[33] (Gaur H., Bhargava A, 2019) “Glyphosate induces toxicity and modulates calcium and NO signaling in zebrafish embryos.” Journal Biochem. Biophys. Res. Commun. 2019;513:1070–1075. doi: 10.1016/j.bbrc.2019.04.074. 

[34]  (Rueda-Ruzafa L., Cruz F., Roman P., Cardona D, 2019) “Gut microbiota and neurological effects of glyphosate.” Neurotoxicology. 2019;75:1–8. doi: 10.1016/j.neuro.2019.08.006. 

[35] (Gress S., Lemoine S., Séralini G.-E., Puddu P.E, 2015) “Glyphosate-Based Herbicides Potently Affect Cardiovascular System in Mammals: Review of the Literature.” Journal Cardiovasc. Toxicol. Volume 15 pages 117–126. doi: 10.1007/s12012-014-9282-y. 

[36] (Brunetti R., Maradey J.A., Dearmin R.S., Belford P.M., Bhave P.D, 2020) “Electrocardiographic abnormalities associated with acute glyphosate toxicity.” Journal  Hear. Case Rep. 2020;6:63–66. doi: 10.1016/j.hrcr.2019.10.014. 

[37] (Mesnage R., Defarge N., Spiroux de Vendômois J., Séralini G.E, 2015) “Potential toxic effects of glyphosate and its commercial formulations below regulatory limits.” Journal Food Chem. Toxicol. 2015;84:133–153. doi: 10.1016/j.fct.2015.08.012. 

[38] (Mesnage R., Renney G., Séralini G.E., Ward M., Antoniou M.N, 2017) “Multiomics reveal non-alcoholic fatty liver disease in rats following chronic exposure to an ultra-low dose of Roundup herbicide.” Journal Sci. Rep. 2017;7:1–15. doi: 10.1038/srep39328. 

[39] (Gao H., Chen J., Ding F., Chou X., Zhang X., Wan Y., Hu J., Wu Q, 2019) “Activation of the N-methyl-d-aspartate receptor is involved in glyphosate-induced renal proximal tubule cell apoptosis.” Journal Appl. Toxicol. Volume 39 pages 1096–1107. doi: 10.1002/jat.3795. 

[40] (Gunarathna S., Gunawardana B., Jayaweera M., Manatunge J., Zoysa K., 2018) “Glyphosate and AMPA of agricultural soil, surface water, groundwater and sediments in areas prevalent with chronic kidney disease of unknown etiology, Sri Lanka.” Journal Environ. Sci. Health Part B. Volume 53:729–737. doi: 10.1080/03601234.2018.1480157. 

[41] (Meftaul I.M., Venkateswarlu K., Dharmarajan R., Annamalai P., Asaduzzaman M., Parven A., Megharaj M, 2020) “Controversies over human health and ecological impacts of glyphosate: Is it to be banned in modern agriculture?” Journal Environ. Pollut. Volume 263:114372. doi: 10.1016/j.envpol.2020.114372. 

[42] (Hao Y., Zhang Y., Ni H., Gao J., Yang Y., Xu W., Tao L, 2019) “Evaluation of the cytotoxic effects of glyphosate herbicides in human liver, lung, and nerve.” Journal  Environ. Sci. Health Part B. Volume 54 pages 737–744. doi: 10.1080/03601234.2019.1633215. 

[43] (Guyton K.Z., Loomis D., Grosse Y., El Ghissassi F., Benbrahim-Tallaa L., Guha N., Scoccianti C., Mattock H., Straif K, 2015) “Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate.” Journal Lancet Oncol. Volume 16 pages 490–491. doi: 10.1016/S1470-2045(15)70134-8. 

[44] (Gillezeau C., van Gerwen M., Shaffer R.M., Rana I., Zhang L., Sheppard L., Taioli E, 2019) “The evidence of human exposure to glyphosate: A review.” Journal Environ. Health. 2019;18:2. doi: 10.1186/s12940-018-0435-5. 

[45] (Zhang L., Rana I., Shaffer R.M., Taioli E., Sheppard , 2019) “Exposure to glyphosate-based herbicides and risk for non-Hodgkin lymphoma: A meta-analysis and supporting evidence.” Journal Mutat. Res. Rev. Mutat. Res. Volume 781 pages 186–206. doi: 10.1016/j.mrrev.2019.02.001. 

[46] (Kwiatkowska M., Reszka E., Woźniak K., Jabłońska E., Michałowicz J., Bukowska B, 2017) “DNA damage and methylation induced by glyphosate in human peripheral blood mononuclear cells (in vitro study)” Journal Food Chem. Toxicol. Volume 105 pages 93–98. doi: 10.1016/j.fct.2017.03.051.

[47] (Antoniou M., Habib M.E.M., Howard, Fagan J, 2012) “Teratogenic Effects of Glyphosate-Based Herbicides: Divergence of Regulatory Decisions from Scientific Evidence.” Journal Environ. Anal. Toxicol. 2012;4:1–13. doi: 10.4172/2161-0525.S4-006. 

[48] (Ciasca B., Pecorelli I., Lepore L., Paoloni A., Catucci L., Pascale M., Lattanzio V.M.T, 2020) “Rapid and reliable detection of glyphosate in pome fruits, berries, pulses and cereals by flow injection–Mass spectrometry.” Journal Food Chem. Volume 310:125813. doi: 10.1016/j.foodchem.2019.125813. 

[49] (Savini S., Bandini M., Sannino A, 2019) “An Improved, Rapid, and Sensitive Ultra-High-Performance Liquid Chromatography-High-Resolution Orbitrap Mass Spectrometry Analysis for the Determination of Highly Polar Pesticides and Contaminants in Processed Fruits and Vegetables.” Journal. Agric. Food Chem. Volume 67 pages 2716–2722. doi: 10.1021/acs.jafc.8b06483. 

[50] (Chamkasem N, 2017) “Determination of Glyphosate, Maleic Hydrazide, Fosetyl Aluminum, and Ethephon in Grapes by Liquid Chromatography/Tandem Mass Spectrometry.” Journal Agric. Food Chem. Volume 65 pages 7535–7541. doi: 10.1021/acs.jafc.7b02419. 

[51] (Chen M.-X., Cao Z.-Y., Jiang Y., Zhu Z.-W, 2013) “Direct determination of glyphosate and its major metabolite, aminomethylphosphonic acid, in fruits and vegetables by mixed-mode hydrophilic interaction/weak anion-exchange liquid chromatography coupled with electrospray tandem mass spectrometry.” Journal Chromatogr. A. Volume 1272 pages 90–99. doi: 10.1016/j.chroma.2012.11.069.

[52]  (Hsu C.C., Whang C.W, 2009) “Microscale solid phase extraction of glyphosate and aminomethylphosphonic acid in water and guava fruit extract using alumina-coated iron oxide nanoparticles followed by capillary electrophoresis and electrochemiluminescence detection.” Journal Chromatogr. A. Volume 1216 pages 8575–8580. doi: 10.1016/j.chroma.2009.10.023.

[53] (Santilio A., Pompili C., Giambenedetti A, 2019) “Determination of glyphosate residue in maize and rice using a fast and easy method involving liquid chromatography–mass spectrometry (LC/MS/MS)”. Journal. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes. Volume 54 pages 205–210. doi: 10.1080/03601234.2018.1550306. 

[54] (Granby K., Johannesen S., Vahl M, 2003) “Analysis of glyphosate residues in cereals using liquid chromatography-mass spectrometry (LC-MS/MS).” Journal Food Addit. Contam. Volume 20 pages 692–698. doi: 10.1080/0265203031000109477.  

[55]  (Chamkasem N., Harmon T, 2016) “Direct determination of glyphosate, glufosinate, and AMPA in soybean and corn by liquid chromatography/tandem mass spectrometry.” Journal Anal. Bioanal. Chem. Volume 408 pages 4995–5004. doi: 10.1007/s00216-016-9597-6. 

[56] (Jansons M., Pugajeva I., Bartkevičs V, 2018) “Occurrence of glyphosate in beer from the Latvian market.” Journal Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2018;35:1767–1775. doi: 10.1080/19440049.2018.1469051. 

[57] (Berg C.J., Peter King H., Delenstarr G., Kumar R., Rubio F., Glaze T, 2018) “Glyphosate residue concentrations in honey attributed through geospatial analysis to proximity of large-scale agriculture and transfer off-site by bees.” PLoS ONE. 2018;13:e0198876. doi: 10.1371/journal.pone.0198876. 

[58] EFSA The 2017 European Union report on pesticide residues in food. EFSA Journal. 2019;17:e05743. doi: 10.2903/j.efsa.2019.5743. 

[59] (Rendón-Von Osten J., Dzul-Caamal R, 2017) “Glyphosate residues in groundwater, drinking water and urine of subsistence farmers from intensive agriculture localities: A survey in Hopelchén, Campeche, Mexico.”  Int. J. Environ. Res. Public Health. 2017;14:595. doi: 10.3390/ijerph14060595.

[60] (Skark C., Zullei-Seibert N., Schöttler U., Schlett C. The occurrence of glyphosate in surface water. Int. J. Environ. Anal. Chem. 1998;70:93–104. doi: 10.1080/03067319808032607.

[61] (Battaglin W.A., Meyer M.T., Kuivila K.M., Dietze J.E, 2014) “Glyphosate and its degradation product AMPA occur frequently and widely in U.S. soils, surface water, groundwater, and precipitation.”  J. Am. Water Resour. Assoc. Volume 50 pages 275–290. doi: 10.1111/jawr.12159.

[62] (Horth H., Blackmore K, 2021) Survey of Glyphosate and AMPA in Groundwaters and Surface Waters in Europe. [(accessed on 7 August 2021)]. Available online: http://www.egeis.org/cd-info/WRC-report-UC8073-02-December-2009-Glyphosate-monitoring-in-water.pdf

[63] The Council of the European Union Council Directive 98/83/EC of November 1998 on the Quality of Water Intended for Human Consumption. [(accessed on 6 August 2021)]. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31998L0083&from=EN

[64] (Soares D et al, November 2021) “Glyphosate Use, Toxicity and Occurrence in Food”. Journal Foods Volume 10 Issue 11 page 2785 PMCID: PMC8622992 PMID: 34829065

https://www.ncbi.nlm.nih.gov › articles › PMC8622992

[65] Comission Regulation (EU) 2017/269 of 16 February 2017. Official Journal of the European Union; Brussels, Belgium: 2017. L. 40/4. 

[66] Davoren M.J., Schiestl R.H. Glyphosate-based herbicides and cancer risk: A post-IARC decision review of potential mechanisms, policy and avenues of research. Carcinogenesis. 2018;39:1207–1215. doi: 10.1093/carcin/bgy105.

[67] Williams G.M., Kroes R., Munro I.C. Safety Evaluation and Risk Assessment of the Herbicide Roundup and Its Active Ingredient, Glyphosate, for Humans. Regul. Toxicol. Pharmacol. 2000;31:117–165. doi: 10.1006/rtph.1999.1371. 

[68] Benbrook C.M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 2016;28:1–15. doi: 10.1186/s12302-016-0070-0. 

[69] Tarazona J.V., Court-Marques D., Tiramani M., Reich H., Pfeil R., Istace F., Crivellente F. Glyphosate toxicity and carcinogenicity: A review of the scientific basis of the European Union assessment and its differences with IARC. Arch. Toxicol. 2017;91:2723–2743. doi: 10.1007/s00204-017-1962-5. 

[70] Chiesa L.M., Nobile M., Panseri S., Arioli F. Detection of glyphosate and its metabolites in food of animal origin based on ion-chromatography-high resolution mass spectrometry (IC-HRMS) Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2019;36:592–600. doi: 10.1080/19440049.2019.1583380. 

[71] Bai S.H., Ogbourne S.M. Glyphosate: Environmental contamination, toxicity and potential risks to human health via food contamination. Environ. Sci. Pollut. Res. 2016;23:18988–19001. doi: 10.1007/s11356-016-7425-3. 

[72] Compound Summary-Glyphosate. [(accessed on 29 October 2021)]; Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Glyphosate

[73] Oliveira P.C., Maximiano E.M., Oliveira P.A., Camargo J.S., Fiorucci A.R., Arruda G.J. Direct electrochemical detection of glyphosate at carbon paste electrode and its determination in samples of milk, orange juice, and agricultural formulation. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes. 2018;53:817–823. doi: 10.1080/03601234.2018.1505081. 

[74] Simonetti E., Cartaud G., Quinn R.M., Marotti I., Dinelli G. An interlaboratory comparative study on the quantitative determination of glyphosate at low levels in wheat flour. J. AOAC Int. 2015;98:1760–1768. doi: 10.5740/jaoacint.15-024. 

[75] EFSA Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate. EFSA J. 2016;13 doi: 10.2903/j.efsa.2015.4302. 

[76] Van Bruggen A.H.C., He M.M., Shin K., Mai V., Jeong K.C., Finckh M.R., Morris J.G. Environmental and health effects of the herbicide glyphosate. Sci. Total Environ. 2018;616–617:255–268. doi: 10.1016/j.scitotenv.2017.10.309. 

[77] Agostini L.P., Dettogni R.S., dos Reis R.S., Stur E., dos Santos E.V.W., Ventorim D.P., Garcia F.M., Cardoso R.C., Graceli J.B., Louro I.D. Effects of glyphosate exposure on human health: Insights from epidemiological and in vitro studies. Sci. Total Environ. 2020;705:135808. doi: 10.1016/j.scitotenv.2019.135808. 

[78] IARC Glyphosate . IARC Monographs on the Evaluation of Carcinogenic Risks to Humans-Volume 112: Some Organophosphate Insecticides and Herbicides. Volume 112. Agência Internacional para a Investigação do Cancro; Lyon, France: 2017. pp. 321–412. 

[79] Conrad A., Schröter-Kermani C., Hoppe H.W., Rüther M., Pieper S., Kolossa-Gehring M. Glyphosate in German adults–Time trend (2001 to 2015) of human exposure to a widely used herbicide. Int. J. Hyg. Environ. Health. 2017;220:8–16. doi: 10.1016/j.ijheh.2016.09.016. 

[80] Thompson T.S., van den Heever J.P., Limanowka R.E. Determination of glyphosate, AMPA, and glufosinate in honey by online solid-phase extraction-liquid chromatography-tandem mass spectrometry. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2019;36:434–446. doi: 10.1080/19440049.2019.1577993. 

[81] Muthman R. In: The Use of Plant Protection Products in the European Union Data 1992–2003. Nadin P., editor. Eurostat Statistical Books; Luxembourg: 2007. 

[82]  Musil B. Czech Republic-Usage of Active Substances in 2011. [(accessed on 10 August 2021)]. Available online: http://eagri.cz/public/web/file/439602/celek_2011_EN.pdf

[83] Chiarello M., Jiménez-Medina M.L., Marín Saéz J., Moura S., Garrido Frenich A., Romero-González R. Fast analysis of glufosinate, glyphosate and its main metabolite, aminomethylphosphonic acid, in edible oils, by liquid chromatographycoupled with electrospray tandem mass spectrometry. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2019;36:1376–1384. doi: 10.1080/19440049.2019.1631493.

[84] Forage Information System Distinguish between Selective and Non-Selective Herbicides and Give an Example of Each. [(accessed on 15 September 2021)]. Available online: https://forages.oregonstate.edu/nfgc/eo/onlineforagecurriculum/instructormaterials/availabletopcis/weeds/herbicides.

[85] Zoller O., Rhyn P., Rupp H., Zarn J.A., Geiser C. Glyphosate residues in Swiss market foods: Monitoring and risk evaluation. Food Addit. Contam. Part B Surveill. 2018;11:83–91. doi: 10.1080/19393210.2017.1419509.

[86] Van Eenennaam A.L., Young A.E. Detection of dietary DNA, protein, and glyphosate in meat, milk, and eggs. J. Anim. Sci. 2017;95:3247–3269. doi: 10.2527/jas2016.1346. 

[87] European Chemicals Agency Proposing Harmonised Classification and Labelling at EU Level of Glyphosate. [(accessed on 10 September 2021)]. Available online: https://echa.europa.eu/documents/10162/2f8b5c7f-030f-5d3a-e87e-0262fb392f38

[88] Gaur H., Bhargava A. Glyphosate induces toxicity and modulates calcium and NO signaling in zebrafish embryos. Biochem. Biophys. Res. Commun. 2019;513:1070–1075. doi: 10.1016/j.bbrc.2019.04.074. 

[89] APVMA . Regulatory Position: Consideration of the Evidence for a Formal Reconsideration of Glyphosate. APVMA; Kingston Act, Australia: 2017. 

[90] Gillezeau C., van Gerwen M., Shaffer R.M., Rana I., Zhang L., Sheppard L., Taioli E. The evidence of human exposure to glyphosate: A review. Environ. Health. 2019;18:2. doi: 10.1186/s12940-018-0435-5. 

[91] Vainio H. Public health and evidence-informed policy-making: The case of a commonly used herbicide. Scand. J. Work. Environ. Health. 2020;46:105–109. doi: 10.5271/sjweh.3851.

[92] (Mahendrakar K et al, May 2014) “Glyphosate surfactant herbicide poisoning and management”. Indian Journal of Critical Care Medicine Volume 18 Issue 5 pages 328-330 PMC4047698 https://www.ncbi.nlm.nih.gov › articles › PMC4047698 PMID: 24914265

[93] Giesey JP, Dobson S, Solomon KR. Ecotoxicological risk assessment for roundup herbicide. Rev Environ Contam Toxicol. 2000;167:35–120. 

[94] Cheng JC, Cheng MC. Glyphosate intoxication in 28 patients. Ann Emerg Med. 1995;26:721. 

[95] Lee CH, Shih CP, Hsu KH, Hung DZ, Lin CC. The early prognostic factors of glyphosate-surfactant intoxication. Am J Emerg Med. 2008;26:275–81. 

[96] Stella J, Ryan M. Glyphosate herbicide formulation: A potentially lethal ingestion. Emerg Med Australas. 2004;16:235–9. 

[97] Han SK, Jeong J, Yeom S, Ryu J, Park S. Use of a lipid emulsion in a patient with refractory hypotension caused by glyphosate-surfactant herbicide. Clin Toxicol (Phila) 2010;48:566–8. 

[98] Barlow S, Schlatter J. Risk assessment of carcinogens in food. Toxicol Appl Pharmacol. 2010;243:180–190. doi: 10.1016/j.taap.2009.11.004.

[99] Becker RA, Patlewicz G, Simon TW, Rowlands JC, Budinsky RA. The adverse outcome pathway for rodent liver tumor promotion by sustained activation of the aryl hydrocarbon receptor. Regul Toxicol Pharmacol. 2015;73:172–190. doi: 10.1016/j.yrtph.2015.06.015.

[100] Benachour N, Seralini G-E. Glyphosate formulations induce apoptosis and necrosis in human umbilical, embryonic, and placental cells. Chem Res Toxicol. 2009;22:97–105. doi: 10.1021/tx800218n.

[101] Benner P, Mena H, Schneider R. Modeling glyphosate aerial spray drift at the ecuador-colombia border. Appl Math Modell. 2016;40:373–387. doi: 10.1016/j.apm.2015.04.057.

[102] Chruscielska KGB, Brzezinski J, Kita K et al (2000) Glyphosate: evaluation of chronic activity and possible far-reaching effects-Part 1. Studies on chronic toxicity. Pestycydy (3–4):11–20

[103] Clewell H. Use of mode of action in risk assessment: Past, present, and future. Regul Toxicol Pharmacol. 2005;42:3–14. doi: 10.1016/j.yrtph.2005.01.008. 

[104] Collier ZA, Gust KA, Gonzalez-Morales B, Gong P, Wilbanks MS, Linkov I, et al. A weight of evidence assessment approach for adverse outcome pathways. Regul Toxicol Pharmacol RTP. 2016;75:46–57. doi: 10.1016/j.yrtph.2015.12.014.

[105] Cox C, Surgan M. Unidentified inert ingredients in pesticides: Implications for human and environmental health. Environ Health Perspect. 2006;114:1803–1806. 

[106] European Food Safety Authority (2015a) Peer review report to the conclusion regarding the peer review of the pesticide risk assessment of the active substance glyphosate

[107] European Food Safety Authority Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate. EFSA J. 2015;13:4302–4302. doi: 10.2903/j.efsa.2015.4302. 

[108] European Food Safety Authority (2016) The 2014 European union report on pesticide residues in food. EFSA J 14:4611, p 139. doi:10.2903/j.efsa.2016.4611

[109] European Food Safety Authority Final review of the Séralini et al. (2012a) publication on a 2-year rodent feeding study with glyphosate formulations and GM maize NK603 as published online on 19 september 2012 in food and chemical toxicology. EFSA J. 2012;10(11):2986. doi: 10.2903/j.efsa.2012.2986. 

[110] Gaylor DW. Are tumor incidence rates from chronic bioassays telling us what we need to know about carcinogens? Regul Toxicol Pharmacol. 2005;41:128–133. doi: 10.1016/j.yrtph.2004.11.001. 

[111] George J, Prasad S, Mahmood Z, Shukla Y. Studies on glyphosate-induced carcinogenicity in mouse skin: a proteomic approach. J Proteomics. 2010;73:951–964. doi: 10.1016/j.jprot.2009.12.008. 

[112] Germany (2015) Final addendum to the renewal assessment report on glyphosate, compiled by efsa

[113] Ghisi NdC, de Oliveira EC, Prioli AJ. Does exposure to glyphosate lead to an increase in the micronuclei frequency? A systematic and meta-analytic review. Chemosphere. 2016;145:42–54. doi: 10.1016/j.chemosphere.2015.11.044. 

[114] Greim H, Saltmiras D, Mostert V, Strupp C. Evaluation of carcinogenic potential of the herbicide glyphosate, drawing on tumor incidence data from fourteen chronic/carcinogenicity rodent studies. Crit Rev Toxicol. 2015;45:185–208. doi: 10.3109/10408444.2014.1003423. 

[115] Ibrahim YA. A regulatory perspective on the potential carcinogenicity of glyphosate. J Toxicol Health. 2015;2:1. doi: 10.7243/2056-3779-2-1. 

[116]  JMPR (2006) Pesticide residues in food – 2004. Joint fao/who meeting on pesticide residues evaluations 2004 part ii—toxicological. Who/pcs/06.1. Who, malta.

[117] JMPR (2016) Pesticide residues in food—2016. Special Session of the Joint FAO/WHO Meeting on Pesticide Residues. FAO Plant Protection Paper 227. Rome

[118] Kier LD. Review of genotoxicity biomonitoring studies of glyphosate-based formulations. Crit Rev Toxicol. 2015;45:209–218. doi: 10.3109/10408444.2015.1010194. 

[119] Kim Y-h, Hong J-r, Gil H-w, Song H-y, Hong S-y. Mixtures of glyphosate and surfactant tn20 accelerate cell death via mitochondrial damage-induced apoptosis and necrosis. Toxicol in Vitro. 2013;27:191–197. doi: 10.1016/j.tiv.2012.09.021. 

[120] Mesnage R, Bernay B, Seralini GE. Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology. 2013;313:122–128. doi: 10.1016/j.tox.2012.09.006. 

[121] Niemann L, Sieke C, Pfeil R, Solecki R. A critical review of glyphosate findings in human urine samples and comparison with the exposure of operators and consumers. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit-Journal of Consumer Protection and Food Safety. 2015;10:3–12. doi: 10.1007/s00003-014-0927-3. 

[122] Nobels I, Spanoghe P, Haesaert G, Robbens J, Blust R. Toxicity ranking and toxic mode of action evaluation of commonly used agricultural adjuvants on the basis of bacterial gene expression profiles. PLOS ONE. 2011;6(11):e24139. doi: 10.1371/journal.pone.0024139. 

[123] Ntzani EECM, Ntritsos G, Evangelou E, Tzoulaki I (2013) Literature review on epidemiological studies linking exposure to pesticides and health effects. Efsa supporting publication 2013:En-497, pp 159

[124] OECD (2012) Guidance document 116 on the conduct and design of chronic toxicity and carcinogenicity studies, supporting test guidelines 451, 452 and 453 2nd edition. Series on testing and assessment no. 116. Env/jm/mono(2011)47.

[125] Pearce N, Blair A, Vineis P, Ahrens W, Andersen A, Anto JM, et al. Iarc monographs: 40 years of evaluating carcinogenic hazards to humans. Environ Health Perspect. 2015;123:507–514. 

[126] Rolando CA, Garrett LG, Baillie BR, Watt MS. A survey of herbicide use and a review of environmental fate in New Zealand planted forests. N Z J For Sci. 2013;43(1):17. doi: 10.1186/1179-5395-43-17. 

[127] Seralini G-E, Clair E, Mesnage R, Gress S, Defarge N, Malatesta M, et al. Republished study: long-term toxicity of a roundup herbicide and a roundup-tolerant genetically modified maize. Environ Sci Eur. 2014;26:14. doi: 10.1186/s12302-014-0014-5. 

[128] Shao-Wen H, Chun-Hong L. Toxic effects and exposure risk assessment of glyphosate. J Food Saf Quality. 2015;6:880–885. 

[129] Solomon KR, Anadon A, Carrasquilla G, Cerdeira AL, Marshall J, Sanin L-H (2007) Coca and poppy eradication in colombia: environmental and human health assessment of aerially applied glyphosate. In: Reviews of environmental contamination and toxicology, vol 190, (Ware GW (ed)), 43–125

 [130] Williams GM, Kroes R, Munro IC. Safety evaluation and risk assessment of the herbicide roundup and its active ingredient, glyphosate, for humans. Regul Toxicol Pharmacol. 2000;31:117–165. doi: 10.1006/rtph.1999.1371. 

[131] (Costas-Ferreira C et al, 21 April 2022) “Toxic Effects of Glyphosate on the Nervous System: A Systematic Review”. International Journal of Molecular Sciences Volume 23 Issue 9 page 4605 PMC9101768 PMID: 35562999 https://www.ncbi.nlm.nih.gov › articles › PMC9101768

[132] Faria MA. Glyphosate, neurological diseases—and the scientific method. Surg Neurol Int. 2015;6:132–132. doi: 10.4103/2152-7806.162550. 

[133] Szepanowski F., Szepanowski L.-P., Mausberg A.K., Albrecht P., Kleinschnitz C., Kieseier B.C., Stettner M. Differential impact of pure glyphosate and glyphosate-based herbicide in a model of peripheral nervous system myelination. Acta Neuropathol. 2018;136:979–982. doi: 10.1007/s00401-018-1938-4. 

[134] Cattani D., Cesconetto P.A., Tavares M.K., Parisotto E.B., Oliveira P.V., Rieg C.E.H., Leite M.C., Prediger R., Wendt N., Razzera G., et al. Developmental exposure to glyphosate-based herbicide and depressive-like behavior in adult offspring: Implication of glutamate excitotoxicity and oxidative stress. Toxicology. 2017;387:67–80. doi: 10.1016/j.tox.2017.06.001. 

[135] Klümper W., Qaim M. A Meta-Analysis of the Impacts of Genetically Modified Crops. PLoS ONE. 2014;9:e111629. doi: 10.1371/journal.pone.0111629. 

[136] Maggi F., la Cecilia D., Tang F.H., McBratney A. The global environmental hazard of glyphosate use. Sci. Total Environ. 2020;717:137167. doi: 10.1016/j.scitotenv.2020.137167. 

[137] Saunders L.E., Pezeshki R. Glyphosate in Runoff Waters and in the Root-Zone: A Review. Toxics. 2015;3:462–480. doi: 10.3390/toxics3040462. 

[138] Van Bruggen A.H.C., He M.M., Shin K., Mai V., Jeong K.C., Finckh M.R., Morris J.G., Jr. Environmental and health effects of the herbicide glyphosate. Sci. Total Environ. 2018;616–617:255–268. doi: 10.1016/j.scitotenv.2017.10.309. 

[139] Martínez M.-A., Ares I., Rodríguez J.-L., Martínez M., Martínez-Larrañaga M.-R., Anadón A. Neurotransmitter changes in rat brain regions following glyphosate exposure. Environ. Res. 2018;161:212–219. doi: 10.1016/j.envres.2017.10.051.

[140] Williams G.M., Kroes R., Munro I.C. Safety Evaluation and Risk Assessment of the Herbicide Roundup and Its Active Ingredient, Glyphosate, for Humans. Regul. Toxicol. Pharmacol. 2000;31:117–165. doi: 10.1006/rtph.1999.1371. 

[141] Conrad A., Schröter-Kermani C., Hoppe H.-W., Rüther M., Pieper S., Kolossa-Gehring M. Glyphosate in German adults—Time trend (2001 to 2015) of human exposure to a widely used herbicide. Int. J. Hyg. Environ. Health. 2017;220:8–16. doi: 10.1016/j.ijheh.2016.09.016. 

[142] Krüger M., Schledorn P., Schrödl W., Hoppe H.W., Lutz W., Shehata A.A. Detection of Glyphosate Residues in Animals and Humans. J. Environ. Anal. Toxicol. 2014;4:1000210. doi: 10.4172/2161-0525.1000210. 

 [143] Krüger M., Schrödl W., Pedersen I. Detection of Glyphosate in Malformed Piglets. J. Environ. Anal. Toxicol. 2014;4:1000230. doi: 10.4172/2161-0525.1000230. 

 [144] Tarazona J.V., Court-Marques D., Tiramani M., Reich H., Pfeil R., Istace F., Crivellente F. Glyphosate toxicity and carcinogenicity: A review of the scientific basis of the European Union assessment and its differences with IARC. Arch. Toxicol. 2017;91:2723–2743. doi: 10.1007/s00204-017-1962-5. 

 [145] Cattani D., Cavalli V.L.D.L.O., Rieg C.E.H., Domingues J.T., Dal-Cim T., Tasca C.I., Silva F.R.M.B., Zamoner A. Mechanisms underlying the neurotoxicity induced by glyphosate-based herbicide in immature rat hippocampus: Involvement of glutamate excitotoxicity. Toxicology. 2014;320:34–45. doi: 10.1016/j.tox.2014.03.001. 

[146] Mesnage R., Bernay B., Séralini G.-E. Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology. 2013;313:122–128. doi: 10.1016/j.tox.2012.09.006. 

[147] Fuhrimann S., Farnham A., Staudacher P., Atuhaire A., Manfioletti T., Niwagaba C.B., Namirembe S., Mugweri J., Winkler M.S., Portengen L., et al. Exposure to multiple pesticides and neurobehavioral outcomes among smallholder farmers in Uganda. Environ. Int. 2021;152:106477. doi: 10.1016/j.envint.2021.106477. 

[148]  Lee J.-W., Choi Y.-J., Park S., Gil H.-W., Song H.-Y., Hong S.-Y. Serum S100 protein could predict altered consciousness in glyphosate or glufosinate poisoning patients. Clin. Toxicol. 2017;55:357–359. doi: 10.1080/15563650.2017.1286013. 

[149] Von Ehrenstein O.S., Ling C., Cui X., Cockburn M., Park A.S., Yu F., Wu J., Ritz B. Prenatal and infant exposure to ambient pesticides and autism spectrum disorder in children: Population based case-control study. BMJ. 2019;364:l962. doi: 10.1136/bmj.l962. 

[150] Zhang C., Sun Y., Hu R., Huang J., Huang X., Li Y., Yin Y., Chen Z. A comparison of the effects of agricultural pesticide uses on peripheral nerve conduction in China. Sci. Rep. 2018;8:9621. doi: 10.1038/s41598-018-27713-6. 

[151] Hao Y., Zhang Y., Ni H., Gao J., Yang Y., Xu W., Tao L. Evaluation of the cytotoxic effects of glyphosate herbicides in human liver, lung, and nerve. J. Environ. Sci. Health Part B. 2019;54:737–744. doi: 10.1080/03601234.2019.1633215. 

[152] Martinez A., Al-Ahmad A.J. Effects of glyphosate and aminomethylphosphonic acid on an isogeneic model of the human blood-brain barrier. Toxicol. Lett. 2018;304:39–49. doi: 10.1016/j.toxlet.2018.12.013. 

[153] Martínez M.-A., Rodriguez-Gutierrez J.-L., Torres B.L., Martínez M., Martínez-Larrañaga M.-R., Maximiliano J.-E., Anadón A., Ares I. Use of human neuroblastoma SH-SY5Y cells to evaluate glyphosate-induced effects on oxidative stress, neuronal development and cell death signaling pathways. Environ. Int. 2019;135:105414. doi: 10.1016/j.envint.2019.105414. 

[154] Luo J., Chen J., Deng Z.-L., Luo X., Song W.-X., Sharff K.A., Tang N., Haydon R.C., Luu H.H., He T.-C. Wnt signaling and human diseases: What are the therapeutic implications? Lab. Investig. 2007;87:97–103. doi: 10.1038/labinvest.3700509. 

[155] Okerlund N.D., Cheyette B.N.R. Synaptic Wnt signaling—a contributor to major psychiatric disorders? J. Neurodev. Disord. 2011;3:162–174. doi: 10.1007/s11689-011-9083-6. 

[156] Kwan V., Unda B.K., Singh K.K. Wnt signaling networks in autism spectrum disorder and intellectual disability. J. Neurodev. Disord. 2016;8:45. doi: 10.1186/s11689-016-9176-3. 

[157] Zhang Y., Yuan X.-S., Wang Z., Li R. The canonical Wnt signaling pathway in autism. CNS Neurol. Disord.—Drug Targets. 2014;13:765–770. doi: 10.2174/1871527312666131223114149. 

[158] Good P. Evidence the U.S. autism epidemic initiated by acetaminophen (Tylenol) is aggravated by oral antibiotic amoxicillin/clavulanate (Augmentin) and now exponentially by herbicide glyphosate (Roundup) Clin. Nutr. ESPEN. 2018;23:171–183. doi: 10.1016/j.clnesp.2017.10.005. 

[159] Pu Y., Yang J., Chang L., Qu Y., Wang S., Zhang K., Xiong Z., Zhang J., Tan Y., Wang X., et al. Maternal glyphosate exposure causes autism-like behaviors in offspring through increased expression of soluble epoxide hydrolase. Proc. Natl. Acad. Sci. USA. 2020;117:11753–11759. doi: 10.1073/pnas.1922287117.

[160] Swanson N.L., Leu A., Abrahamson J., Wallet B. Genetically engineered crops, glyphosate and the deterioration of health in the United States of America. JOS. 2014;9:6–37. 

[161] Coultrap S.J., Vest R.S., Ashpole N.M., Hudmon A., Bayer K.U. CaMKII in cerebral ischemia. Acta Pharmacol. Sin. 2011;32:861–872. doi: 10.1038/aps.2011.68.

[162] Zhang X., Connelly J., Levitan E.S., Sun D., Wang J.Q. Calcium/Calmodulin–Dependent Protein Kinase II in Cerebrovascular Diseases. Transl. Stroke Res. 2021;12:513–529. doi: 10.1007/s12975-021-00901-9. 

[163] Bali Y.A., Ba-Mhamed S., Bennis M. Behavioral and Immunohistochemical Study of the Effects of Subchronic and Chronic Exposure to Glyphosate in Mice. Front. Behav. Neurosci. 2017;11:146. doi: 10.3389/fnbeh.2017.00146.

[164] Bali Y.A., Kaikai N.-E., Ba-M’Hamed S., Bennis M. Learning and memory impairments associated to acetylcholinesterase inhibition and oxidative stress following glyphosate based-herbicide exposure in mice. Toxicology. 2019;415:18–25. doi: 10.1016/j.tox.2019.01.010. 

[165] Ait-Bali Y., Ba-M’Hamed S., Gambarotta G., Sassoè-Pognetto M., Giustetto M., Bennis M. Pre- and postnatal exposure to glyphosate-based herbicide causes behavioral and cognitive impairments in adult mice: Evidence of cortical ad hippocampal dysfunction. Arch. Toxicol. 2020;94:1703–1723. doi: 10.1007/s00204-020-02677-7. 

[166] Baier C.J., Gallegos C.E., Raisman-Vozari R., Minetti A. Behavioral impairments following repeated intranasal glyphosate-based herbicide administration in mice. Neurotoxicology Teratol. 2017;64:63–72. doi: 10.1016/j.ntt.2017.10.004. 

[167] Cattani D., Struyf N., Steffensen V., Bergquist J., Zamoner A., Brittebo E., Andersson M. Perinatal exposure to a glyphosate-based herbicide causes dysregulation of dynorphins and an increase of neural precursor cells in the brain of adult male rats. Toxicology. 2021;461:152922. doi: 10.1016/j.tox.2021.152922. 

[168] Coullery R., Pacchioni A.M., Rosso S.B. Exposure to glyphosate during pregnancy induces neurobehavioral alterations and downregulation of Wnt5a-CaMKII pathway. Reprod. Toxicol. 2020;96:390–398. doi: 10.1016/j.reprotox.2020.08.006. 

[169] Dechartres J., Pawluski J.L., Gueguen M., Jablaoui A., Maguin E., Rhimi M., Charlier T.D. Glyphosate and glyphosate-based herbicide exposure during the peripartum period affects maternal brain plasticity, maternal behaviour and microbiome. J. Neuroendocr. 2019;31:e12731. doi: 10.1111/jne.12731.

[170] Gallegos C.E., Bartos M., Gumilar F., Raisman-Vozari R., Minetti A., Baier C.J. Intranasal glyphosate-based herbicide administration alters the redox balance and the cholinergic system in the mouse brain. NeuroToxicology. 2020;77:205–215. doi: 10.1016/j.neuro.2020.01.007. 

[171] Hernández-Plata I., Giordano M., Díaz-Muñoz M., Rodríguez V.M. The herbicide glyphosate causes behavioral changes and alterations in dopaminergic markers in male Sprague-Dawley rat. NeuroToxicology. 2015;46:79–91. doi: 10.1016/j.neuro.2014.12.001. 

[172] Ji H., Xu L., Wang Z., Fan X., Wu L. Differential microRNA expression in the prefrontal cortex of mouse offspring induced by glyphosate exposure during pregnancy and lactation. Exp. Ther. Med. 2017;15:2457–2467. doi: 10.3892/etm.2017.5669. 

[173] Joaquim A., Spinosa H., Macrini D.J., Rodrigues P.A., Ricci E.L., Artiolli T.S., Moreira N., Suffering I.B., Bernardi M.M. Behavioral effects of acute glyphosate exposure in male and female Balb/c mice. Braz. J. Vet. Res. Anim. Sci. 2012;49:367–376. doi: 10.11606/issn.2318-3659.v49i5p367-376. 

[174] Larsen K.E., Lifschitz A.L., Lanusse C.E., Virkel G.L. The herbicide glyphosate is a weak inhibitor of acetylcholinesterase in rats. Environ. Toxicol. Pharmacol. 2016;45:41–44. doi: 10.1016/j.etap.2016.05.012. 

[175] Luna S., Neila L.P., Vena R., Borgatello C., Rosso S.B. Glyphosate exposure induces synaptic impairment in hippocampal neurons and cognitive deficits in developing rats. Arch. Toxicol. 2021;95:2137–2150. doi: 10.1007/s00204-021-03046-8. 

[176] Gui Y.-X., Fan X.-N., Wang H.-M., Wang G., Chen S.-D. Glyphosate induced cell death through apoptotic and autophagic mechanisms. Neurotoxicol. Teratol. 2012;34:344–349. doi: 10.1016/j.ntt.2012.03.005. 

[177] Masood M.I., Naseem M., Warda S.A., Tapia-Laliena M., Rehman H.U., Nasim M.J., Schäfer K.H. Environment permissible concentrations of glyphosate in drinking water can influence the fate of neural stem cells from the subventricular zone of the postnatal mouse. Environ. Pollut. 2020;270:116179. doi: 10.1016/j.envpol.2020.116179. 

[178] Da Silva K.N., Cappellaro L.G., Ueda C.N., Rodrigues L., Remor A.P., Martins R.D.P., Latini A., Glaser V. Glyphosate-based herbicide impairs energy metabolism and increases autophagy in C6 astroglioma cell line. J. Toxicol. Environ. Health Part A. 2020;83:153–167. doi: 10.1080/15287394.2020.1731897. 

[179] Szepanowski F., Szepanowski L.-P., Mausberg A.K., Albrecht P., Kleinschnitz C., Kieseier B.C., Stettner M. Differential impact of pure glyphosate and glyphosate-based herbicide in a model of peripheral nervous system myelination. Acta Neuropathol. 2018;136:979–982. doi: 10.1007/s00401-018-1938-4. 

[180] Szepanowski F., Kleinschnitz C., Stettner M. Glyphosate-based herbicide: A risk factor for demyelinating conditions of the peripheral nervous system? Neural Regen. Res. 2019;14:2079–2080. doi: 10.4103/1673-5374.262579. 

[181] Arredondo S.B., Guerrero F.G., Herrera-Soto A., Jensen-Flores J., Bustamante D.B., Oñate-Ponce A., Henny P., Varas-Godoy M., Inestrosa N.C., Varela-Nallar L. Wnt5a promotes differentiation and development of adult-born neurons in the hippocampus by noncanonical Wnt signaling. Stem Cells. 2019;38:422–436. doi: 10.1002/stem.3121. 

[182] Habtemariam S. The brain-derived neurotrophic factor in neuronal plasticity and neuroregeneration: New pharmacological concepts for old and new drugs. Neural Regen. Res. 2018;13:983–984. doi: 10.4103/1673-5374.233438. 

[183] Faria M., Bedrossiantz J., Ramírez J.R.R., Mayol M., García G.H., Bellot M., Prats E., Garcia-Reyero N., Gómez-Canela C., Gómez-Oliván L.M., et al. Glyphosate targets fish monoaminergic systems leading to oxidative stress and anxiety. Environ. Int. 2020;146:106253. doi: 10.1016/j.envint.2020.106253. 

[184] Bernal-Rey D.L., Cantera C.G., Afonso M.D.S., Menéndez-Helman R.J. Seasonal variations in the dose-response relationship of acetylcholinesterase activity in freshwater fish exposed to chlorpyrifos and glyphosate. Ecotoxicol. Environ. Saf. 2019;187:109673. doi: 10.1016/j.ecoenv.2019.109673. 

[185] Braz-Mota S., Sadauskas-Henrique H., Duarte R., Val A., Almeida-Val V.M. Roundup® exposure promotes gills and liver impairments, DNA damage and inhibition of brain cholinergic activity in the Amazon teleost fish Colossoma macropomum. Chemosphere. 2015;135:53–60. doi: 10.1016/j.chemosphere.2015.03.042. 

[186] Bridi D., Altenhofen S., Gonzalez J.B., Reolon G.K., Bonan C.D. Glyphosate and Roundup® alter morphology and behavior in zebrafish. Toxicology. 2017;392:32–39. doi: 10.1016/j.tox.2017.10.007. 

[187] Díaz-Martín R.D., Valencia-Hernández J.D., Betancourt-Lozano M., Yáñez-Rivera B. Changes in microtubule stability in zebrafish (Danio rerio) embryos after glyphosate exposure. Heliyon. 2021;7:e06027. doi: 10.1016/j.heliyon.2021.e06027. 

[188] Forner-Piquer I., Faucherre A., Byram J., Blaquiere M., de Bock F., Gamet-Payrastre L., Ellero-Simatos S., Audinat E., Jopling C., Marchi N. Differential impact of dose-range glyphosate on locomotor behavior, neuronal activity, glio-cerebrovascular structures, and transcript regulations in zebrafish larvae. Chemosphere. 2020;267:128986. doi: 10.1016/j.chemosphere.2020.128986. 

[189] He B., Ni Y., Jin Y., Fu Z. Pesticides-induced energy metabolic disorders. Sci. Total Environ. 2020;729:139033. doi: 10.1016/j.scitotenv.2020.139033. 

[190] McVey K.A., Snapp I.B., Johnson M.B., Negga R., Pressley A.S., Fitsanakis V.A. Exposure of C. elegans eggs to a glyphosate-containing herbicide leads to abnormal neuronal morphology. Neurotoxicol. Teratol. 2016;55:23–31. doi: 10.1016/j.ntt.2016.03.002.  

[191] Burchfield S.L., Bailey D.C., Todt C.E., Denney R.D., Negga R., Fitsanakis V.A. Acute exposure to a glyphosate-containing herbicide formulation inhibits Complex II and increases hydrogen peroxide in the model organism Caenorhabditis elegans. Environ. Toxicol. Pharmacol. 2018;66:36–42. doi: 10.1016/j.etap.2018.12.019. 

[192] Fortes C., Mastroeni S., Segatto M.M., Hohmann C., Miligi L., Bakos L., Bonamigo R. Occupational Exposure to Pesticides With Occupational Sun Exposure Increases the Risk for Cutaneous Melanoma. J. Occup. Environ. Med. 2016;58:370–375. doi: 10.1097/JOM.0000000000000665. 

[193] Jayasumana C., Gunatilake S., Senanayake P. Glyphosate, Hard Water and Nephrotoxic Metals: Are They the Culprits Behind the Epidemic of Chronic Kidney Disease of Unknown Etiology in Sri Lanka? Int. J. Environ. Res. Public Health. 2014;11:2125–2147. doi: 10.3390/ijerph110202125. 

[194] Kamel F., Hoppin J.A. Association of Pesticide Exposure with Neurologic Dysfunction and Disease. Environ. Health Perspect. 2004;112:950–958. doi: 10.1289/ehp.7135. 

[195] Lee W.J., Alavanja M.C., Hoppin J., Rusiecki J.A., Kamel F., Blair A., Sandler D.P. Mortality among Pesticide Applicators Exposed to Chlorpyrifos in the Agricultural Health Study. Environ. Health Perspect. 2007;115:528–534. doi: 10.1289/ehp.9662. 

[196] Le Couteur D., McLean A., Taylor M., Woodham B., Board P. Pesticides and Parkinson’s disease. Biomed. Pharmacother. 1999;53:122–130. doi: 10.1016/S0753-3322(99)80077-8. 

[197] Koller V.J., Fürhacker M., Nersesyan A., Mišík M., Eisenbauer M., Knasmueller S. Cytotoxic and DNA-damaging properties of glyphosate and Roundup in human-derived buccal epithelial cells. Arch. Toxicol. 2012;86:805–813. doi: 10.1007/s00204-012-0804-8. 

[198]Solomon K.R. Glyphosate in the general population and in applicators: A critical review of studies on exposures. Crit. Rev. Toxicol. 2016;46:21–27. doi: 10.1080/10408444.2016.1214678. 

[199] Paumgartten F.J.R. To be or not to be a carcinogen; delving into the glyphosate classification controversy. Braz. J. Pharm. Sci. 2019;55:2175-97902019000118217. doi: 10.1590/s2175-97902019000118217.

[200] Kawagashira Y., Koike H., Kawabata K., Takahashi M., Ohyama K., Hashimoto R., Iijima M., Katsuno M., Sobue G. Vasculitic Neuropathy Following Exposure to a Glyphosate-based Herbicide. Intern. Med. 2017;56:1431–1434. doi: 10.2169/internalmedicine.56.8064. 

[201] Benachour N., Séralini G.-E. Glyphosate Formulations Induce Apoptosis and Necrosis in Human Umbilical, Embryonic, and Placental Cells. Chem. Res. Toxicol. 2009;22:97–105. doi: 10.1021/tx800218n. 

[202] Mesnage R., Ibragim M., Mandrioli D., Falcioni L., Tibaldi E., Belpoggi F., Brandsma I., Bourne E., Savage E., Mein C.A., et al. Comparative Toxicogenomics of Glyphosate and Roundup Herbicides by Mammalian Stem Cell-Based Genotoxicity Assays and Molecular Profiling in Sprague-Dawley Rats. Toxicol. Sci. 2021;186:83–101. doi: 10.1093/toxsci/kfab143.

[203] El-Shenawy N.S. Oxidative stress responses of rats exposed to Roundup and its active ingredient glyphosate. Environ. Toxicol. Pharmacol. 2009;28:379–385. doi: 10.1016/j.etap.2009.06.001. 

[204] Peixoto F. Comparative effects of the Roundup and glyphosate on mitochondrial oxidative phosphorylation. Chemosphere. 2005;61:1115–1122. doi: 10.1016/j.chemosphere.2005.03.044. 

[205] Richard S., Moslemi S., Sipahutar H., Benachour N., Seralini G.-E. Differential Effects of Glyphosate and Roundup on Human Placental Cells and Aromatase. Environ. Health Perspect. 2005;113:716–720. doi: 10.1289/ehp.7728. 

[206] (Picetti E et al, 2017) “Glyphosate ingestion causing multiple organ failure: a near-fatal case report” Journal Acta Biomedica Volume 88 Issue 4 pages 533-536. PMC6166172 PMID: 29350673 https://www.ncbi.nlm.nih.gov › articles › PMC6166172

[207]  Székàcs I, Fejes À, Klàtyik S, Takàcs E, Patkò D, Pomòthy J, et al. Environmental and toxicological impacts of glyphosate with its formulating adjuvant. Int J Biol Food Vet Agric Food Eng. 2014;8:213–218. 

[208] Gress S, Lemoine S, Séralini GE, Puddu PE. Glyphosate-based herbicides potently affect cardiovascular system in mammals: review of the literature. Cardiovasc Toxicol. 2015;15(2):117–126. 

[209] Potrebic O, Jovic-Stosic J, Vucinic S, Tadic J, Radulac M. Acute glyphosate-surfactant poisoning with neurological sequels and fatal outcome. Vojnosanit Pregl. 2009;66:758–762. 

[210] Hwan Kim Y, Ho Lee J, Kun Hong C, Won Cho K, Hwan Park Y, Weon Kim Y, et al. Heart rate-corrected QT interval predicts mortality in glyphosate-surfactant herbicidepoisoned patients. Amer J Emerg Med. 2014;32:203–207. 

 12. Goldstein DA, Acquavella JF, Mannion RM, et al. An analysis of glyphosate data from the California Environmental Protection Agency Pesticide Illness Surveillance Program. J Toxicol Clin Toxicol. 2002;40:885–892. 

 [211] Williams GM, Kroes R, Munro IC. Safety evaluation and risk assessment of the herbicide roundup and its active ingredient, glyphosate, for humans. Regul Toxicol Pharmacol. 2000;31:117–165. 

 [212] Adam A, Marzuki A, Abdul Rahman H, Abdul Aziz M. The oral and intratracheal toxicities of ROUNDUP and its components to rats. Vet Hum Toxicol. 1997;39:147–151. 

[213] Peixoto F. Comparative effects of the Roundup and glyphosate on mitochondrial oxidative phosphorylation. Chemosphere. 2005;61:1115–1122. 

[214] Moon JM, Chun BJ. Predicting acute complicated glyphosate intoxication in the emergency department. Clin Toxicol (Phila) 2010;48:718–724. 

[215] Hwan Kim Y, Ho Lee J, Won Cho K, Woo Lee D, Ju Kang M, Yul Lee K, et al. Prognostic Factors in Emergency Department Patients with Glyphosate Surfactant Intoxication: Point-of-Care Lactate Testing. Basic & Clinical Pharmacology & Toxicology. 2016;119:604–610. 

[216] Niemann L., Sieke C., Pfeil R., Solecki R. A critical review of glyphosate findings in human urine samples and comparison with the exposure of operators and consumers. J. Verbr. Lebensm. 2015;10:3–12. doi: 10.1007/s00003-014-0927-3. 

[217] Acquavella J.F., Alexander B.H., Mandel J.S., Gustin C., Baker B., Chapman P., Bleeke M. Glyphosate biomonitoring for farmers and their families: Results from the Farm Family Exposure Study. Environ. Health Perspect. 2004;112:321–326. doi: 10.1289/ehp.6667. 

[218] (Cindy and Martin Peillex, December 2020) “The Impact and toxicity of glyphosate and glyphosate-based herbicides on health and immunity”. Journal of Immuno toxicology Volume 17 Issue 1 pages 163-174 PMID: 32897110

[219] Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Williams GM, Kroes R, Munro IC.Regul Toxicol Pharmacol. 2000 Apr;31(2 Pt 1):117-65. doi: 10.1006/rtph.1999.1371.PMID: 10854122 Review.

[220] The Ramazzini Institute 13-week study on glyphosate-based herbicides at human-equivalent dose in Sprague Dawley rats: study design and first in-life endpoints evaluation. Panzacchi S, Mandrioli D, Manservisi F, Bua L, Falcioni L, Spinaci M, Galeati G, Dinelli G, Miglio R, Mantovani A, Lorenzetti S, Hu J, Chen J, Perry MJ, Landrigan PJ, Belpoggi F.Environ Health. 2018 May 29;17(1):52. doi: 10.1186/s12940-018-0393-y.PMID: 29843719 

[221] Glyphosate toxicity and carcinogenicity: a review of the scientific basis of the European Union assessment and its differences with IARC. Tarazona JV, Court-Marques D, Tiramani M, Reich H, Pfeil R, Istace F, Crivellente F.Arch Toxicol. 2017 Aug;91(8):2723-2743. doi: 10.1007/s00204-017-1962-5. Epub 2017 Apr 3.PMID: 28374158 

[222] (Singh S et al, October 2020) “Herbicide Glyphosate: Toxicity and Microbial Degradation.” International Journal of Environmental Research and Public Health Volume 17 Issue 20 page 7519 PMCID: PMC7602795 PMID: 33076575
https://www.ncbi.nlm.nih.gov › articles › PMC7602795

[223]  Gill J.P.K., Sethi N., Mohan A. Analysis of the glyphosate herbicide in water, soil and food using derivatising agents. Environ. Chem. Lett. 2017;15:85–100. doi: 10.1007/s10311-016-0585-z. 

[224] Conrad A., Schröter-Kermani C., Hoppe H.W., Rüther M., Pieper S., Kolossa-Gehring M. Glyphosate in German adults—Time trend (2001 to 2015) of human exposure to a widely used herbicide. Int. J. Hyg. Environ. Health. 2017;220:8–16. doi: 10.1016/j.ijheh.2016.09.016. 

[225] International Agency for Research on Cancer . Some Organophosphate Insecticides and Herbicides. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Volume 112. International Agency for Research on Cancer; Lyon, France: 2017. pp. 1–452. 

[226]Niemann L., Sieke C., Pfeil R., Solecki R. A critical review of glyphosate findings in human urine samples and comparison with the exposure of operators and consumers. J. Verbrauch. Leb. 2015;10:3–12. doi: 10.1007/s00003-014-0927-3. 

[227] Milić M., Žunec S., Micek V., Kašuba V., Mikolić A., Tariba Lovaković B., Živković Semren T., Pavičić I., Marjanović Čermak A.M., Pizent A., et al. Oxidative stress, cholinesterase activity, and DNA damage in the liver, whole blood, and plasma of Wistar rats following a 28-day exposure to glyphosate. Arhiv za Higijenu Rada i Toksikologiju. 2018;69:154–168. doi: 10.2478/aiht-2018-69-3114. 

[228] Gill J.P.K., Sethi N., Mohan A., Datta S., Girdhar M. Glyphosate toxicity for animals. Environ. Chem. Lett. 2018;16:401–426. doi: 10.1007/s10311-017-0689-0. 

 [229] Connolly A., Leahy M., Jones K., Kenny L., Coggins M.A. Glyphosate in Irish adults—A pilot study in 2017. Environ. Res. 2018;165:235–236. doi: 10.1016/j.envres.2018.04.025. 

[230] Soukup S.T., Merz B., Bub A., Hoffmann I., Watzl B., Steinberg P., Kulling S.E. Glyphosate and AMPA levels in human urine samples and their correlation with food consumption: Results of the cross-sectional KarMeN study in Germany. Arch. Toxicol. 2020;94:1575. doi: 10.1007/s00204-020-02704-7. 

[231] Richard S., Moslemi S., Sipahutar H., Benachour N., Seralini G.E. Differential effects of glyphosate and Roundup on human placental cells and aromatase. Environ. Health Perspect. 2005;113:716–720. doi: 10.1289/ehp.7728. 

[232] Pieniążek D., Bukowska B., Duda W. Comparison of the effect of Roundup Ultra 360 SL pesticide and its active compound glyphosate on human erythrocytes. Pestic. Biochem. Physiol. 2004;79:58–63. doi: 10.1016/j.pestbp.2004.03.003. 

[233] Koller V.J., Fürhacker M., Nersesyan A., Mišík M., Eisenbauer M., Knasmueller S. Cytotoxic and DNA-damaging properties of glyphosate and Roundup in human-derived buccal epithelial cells. Arch. Toxicol. 2012;86:805–813. doi: 10.1007/s00204-012-0804-8. 

 [234] Zouaoui K., Dulaurent S., Gaulier J.M., Moesch C., Lachâtre G. Determination of glyphosate and AMPA in blood and urine from humans: About 13 cases of acute intoxication. Forensic Sci. Int. 2013;226:e20–e25. doi: 10.1016/j.forsciint.2012.12.010. 

[235] Thongprakaisang S., Thiantanawat A., Rangkadilok N., Suriyo T., Satayavivad J. Glyphosate induces human breast cancer cells growth via estrogen receptors. Food Chem. Toxicol. 2013;59:129–136. doi: 10.1016/j.fct.2013.05.057.

[236] Anifandis G., Katsanaki K., Lagodonti G., Messini C., Simopoulou M., Dafopoulos K., Daponte A. The effect of glyphosate on human sperm motility and sperm DNA fragmentation. Inter. J. Environ. Res. Public Health. 2018;15:1117. doi: 10.3390/ijerph15061117. 

[237] Kwiatkowska M., Huras B., Bukowska B. The effect of metabolites and impurities of glyphosate on human erythrocytes (in vitro) Pestic. Biochem. Physiol. 2014;109:34–43. doi: 10.1016/j.pestbp.2014.01.003. 

[238] Martinez A., Al-Ahmad A.J. Effects of glyphosate and aminomethylphosphonic acid on an isogeneic model of the human blood-brain barrier. Toxicol. Lett. 2019;304:39–49. doi: 10.1016/j.toxlet.2018.12.013. 

[239] Hoppin J.A., Valcin M., Henneberger P.K., Kullman G.J., Umbach D.M., London S.J., Alavanja M.C., Sandler D.P. Pesticide use and chronic bronchitis among farmers in the Agricultural Health Study. Am. J. Ind. Med. 2007;50:969–979. doi: 10.1002/ajim.20523. 

[240] Henneberger P.K., Liang X., London S.J., Umbach D.M., Sandler D.P., Hoppin J.A. Exacerbation of Symptoms in Agricultural Pesticide Applicators with Asthma. Int. Arch. Occup. Environ. Health. 2014;87:423–432. doi: 10.1007/s00420-013-0881-x. 

[241] Menkes D., Temple W., Edwards I. Intentional Self-Poisoning with Glyphosate-Containing Herbicides. Hum. Exp. Toxicol. 1991;10:103–107. doi: 10.1177/096032719101000202. 

[ 242] (Roberts DM et al, February 2010) “A prospective observational study of the clinical toxicology of glyphosate-containing herbicides in adults with acute self-poisoning.” Journal Europe PMC Funders Group Volume 48 Issue 2 pages 129-136 PMCID: PMC2875113 PMID: 20136481  https://www.ncbi.nlm.nih.gov › articles › PMC2875113

[243] Williams GM, Kroes R, Munro IC. Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regul.Toxicol.Pharmacol. 2000;31(2 Pt 1):117–65. 

[244] Linakis JG, Frederick KA. Poisoning deaths not reported to the regional poison control center. Ann.Emerg Med. 1993;22(12):1822–8. 

[245] Talbot AR, Shiaw MH, Huang JS, Yang SF, Goo TS, Wang SH, et al. Acute poisoning with a glyphosate-surfactant herbicide (‘Roundup’): a review of 93 cases. Hum Exp Toxicol. 1991;10(1):1–8. 

 [246] Tominack RL, Yang GY, Tsai WJ, Chung HM, Deng JF. Taiwan National Poison Center survey of glyphosate--surfactant herbicide ingestions. J Toxicol Clin Toxicol. 1991;29(1):91–109. 

[247] Cheng J-C, Cheng M-C. Glyphosate intoxication in 28 patients. Ann.Emerg.Med. 1995;26(6):721. 

 [248] Lee H-L, Chen K-W, Chi C-H, Huang J-J, Tsai L-M. Clinical presentations and prognostic factors of a glyphosate-surfactant herbicide intoxication: a review of 131 cases. Acad.Emerg.Med. 2000;7(8):906–10. 

 [249] Lee C-H, Shih C-P, Hsu K-H, Hung D-Z, Lin C-C. The early prognostic factors of glyphosate-surfactant intoxication. Am.J.Emerg.Med. 2008;26(3):275–81. 

 [250] Chen YJ, Wu ML, Deng JF, Yang CC. The epidemiology of glyphosate-surfactant herbicide poisoning in Taiwan, 1986-2007: a poison center study. Clin Toxicol (Phila) 2009;47(7):670–7. 

 [251] Suh JH, Oh BJ, Roh HK. Clinical outcomes after suicidal ingestion of glyphosate surfactant herbicide: severity of intoxication according to amount ingested. Clinical Toxicology. 2007;45:641. 

[252] Sawada Y, Nagai Y, Ueyama M, Yamamoto I. Probable toxicity of surface-active agent in commercial herbicide containing glyphosate. Lancet. 1988;1(8580):299. 

 [253] Nagami H, Nishigaki Y, Matsushima S, Matsushita T, Asanuma S, Yajima N, et al. Hospital-based survey of pesticide poisoning in Japan, 1998-2002. Int.J.Occup.Environ.Health. 2005;11(2):180–4. 

[254] Tominack RL. Herbicide formulations. J.Toxicol.Clin.Toxicol. 2000;38(2):129–35. 

[255] Bradberry SM, Proudfoot AT, Vale JA. Glyphosate poisoning. Toxicol.Rev. 2004;23(3):159–67. 

[256] Lee HL, Kan CD, Tsai CL, Liou MJ, Guo HR. Comparative effects of the formulation of glyphosate-surfactant herbicides on hemodynamics in swine. Clin Toxicol (Phila) 2009;47(7):651–8. 

 [257] Chang C-Y, Peng Y-C, Hung D-Z, Hu W-H, Yang D-Y, Lin T-J. Clinical impact of upper gastrointestinal tract injuries in glyphosate-surfactant oral intoxication. Hum.Exp.Toxicol. 1999;18(8):475–8. 

 [258] Stella J, Ryan M. Glyphosate herbicide formulation: a potentially lethal ingestion. Emerg.Med.Australas. 2004;16(3):235–9. 

 [259] Chang CB, Chang CC. Refractory cardiopulmonary failure after glyphosate surfactant intoxication: a case report. J Occup.Med Toxicol. 2009;4:2. 2. 

[260] Peixoto F. Comparative effects of the Roundup and glyphosate on mitochondrial oxidative phosphorylation. Chemosphere. 2005;61(8):1115–22.

[261] Talbot A, Ku TS, Chen CL, Li GC, Li HP. Glyphosate levels in acute Roundup herbicide poisoning [Abstract] Ann.Emerg.Med. 1995;26(6):117. 

[262] Cartigny B, Azaroual N, Imbenotte M, Mathieu D, Parmentier E, Vermeersch G, et al. Quantitative determination of glyphosate in human serum by 1H NMR spectroscopy. Talanta. 2008;74(4):1075–8.

[263] Moon JM, Min YI, Chun BJ. Can early hemodialysis affect the outcome of the ingestion of glyphosate herbicide? Clin.Toxicol. 2006;44(3):329–32.

[264] Sampogna RV, Cunard R. Roundup intoxication and a rationale for treatment. Clin Nephrol. 2007;68(3):190–6. 

[265] (Kamijo Y et al, 2016) “A multicenter retrospective survey of poisoning after ingestion of herbicides containing glyphosate potassium salt or other glyphosate salts in Japan.” Journal Clinical Toxicology (Phila) Volume 54 Issue 2 pages 147-51 PMID: 26691886

https://pubmed.ncbi.nlm.nih.gov › ... 

[266] Glyphosate and Polyoxyethyleneamine Ingestion Leading to Renal, Hepatic, and Pulmonary Failure. Bigner JA, Fiester SE, Fulcher JW, Schammel CMG, Ward ME, Burney HE, Wheeler JF, Wheeler SK, Teuber JM.Am J Forensic Med Pathol. 2021 Sep 1;42(3):282-285. doi: 10.1097/PAF.0000000000000660.PMID: 33491949

[267] Aseptic meningitis in association with glyphosate-surfactant herbicide poisoning. Sato C, Kamijo Y, Yoshimura K, Ide T.Clin Toxicol (Phila). 2011 Feb;49(2):118-20. doi: 10.3109/15563650.2011.552065.PMID: 21370950

[268] Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Williams GM, Kroes R, Munro IC.Regul Toxicol Pharmacol. 2000 Apr;31(2 Pt 1):117-65. doi: 10.1006/rtph.1999.1371.PMID: 10854122 Review. 

[269] (Martin-Gomes C et al, March 2022) “Glyphosate vs Glyphosate-Based Herbicides Exposure: A Review on Their Toxicity.” Journal of Xenobotics Volume 12 Issue 1 pages 21-40 PMCID: PMC8788447 PMID: 35076536

https://www.ncbi.nlm.nih.gov › articles › PMC8788447

[270] Hasanuzzaman M., Mohsin S.M., Bhuyan M.H.M.B., Bhuiyan T.F., Anee T.I., Masud A.A.C., Nahar K. Chapter 3—Phytotoxicity, environmental and health hazards of herbicides: Challenges and ways forward. In: Prasad M.N.V., editor. Agrochemicals Detection, Treatment and Remediation. Butterworth-Heinemann; Hyderabad, India: 2020. pp. 55–99.

[271] Singh S., Kumar V., Chauhan A., Datta S., Wani A.B., Singh N., Singh J. Toxicity, degradation and analysis of the herbicide atrazine. Environ. Chem. Lett. 2018;16:211–237. doi: 10.1007/s10311-017-0665-8. 

[272] Kucka M., Pogrmic-Majkic K., Fa S., Stojilkovic S.S., Kovacevic R. Atrazine acts as an endocrine disrupter by inhibiting cAMP-specific phosphodiesterase-4. Toxicol. Appl. Pharmacol. 2012;265:19–26. doi: 10.1016/j.taap.2012.09.019. 

 [273] Ghisi N.D.C., Zuanazzi N.R., Fabrin T.M.C., Oliveira E.C. Glyphosate and its toxicology: A scientometric review. Sci. Total Environ. 2020;733:139359. doi: 10.1016/j.scitotenv.2020.139359. 

[274] Mesnage R., Benbrook C., Antoniou M.N. Insight into the confusion over surfactant co-formulants in glyphosate-based herbicides. Food Chem. Toxicol. 2019;128:137–145. doi: 10.1016/j.fct.2019.03.053. 

[275] Torretta V., Katsoyiannis I., Viotti P., Rada E. Critical Review of the Effects of Glyphosate Exposure to the Environment and Humans through the Food Supply Chain. Sustainability. 2018;10:950. doi: 10.3390/su10040950.

[276] Tang T., Boënne W., Desmet N., Seuntjens P., Bronders J., van Griensven A. Quantification and characterization of glyphosate use and loss in a residential area. Sci. Total Environ. 2015;517:207–214. doi: 10.1016/j.scitotenv.2015.02.040. 

 [277] Liu H., John J. Glyphosate monitoring in water, foods, and urine reveals an association between urinary glyphosate and tea drinking: A pilot study. Int. J. Environ. Health Eng. 2018;7:2. doi: 10.4103/ijehe.ijehe_5_17.

[278] Soukup S.T., Merz B., Bub A., Hoffmann I., Watzl B., Steinberg P., Kulling S.E. Glyphosate and AMPA levels in human urine samples and their correlation with food consumption: Results of the cross-sectional KarMeN study in Germany. Arch. Toxicol. 2020;94:1575–1584. doi: 10.1007/s00204-020-02704-7. 

 [279] Parvez S., Gerona R.R., Proctor C., Friesen M., Ashby J.L., Reiter J.L., Lui Z., Winchester P.D. Glyphosate exposure in pregnancy and shortened gestational length: A prospective Indiana birth cohort study. Environ. Health. 2018;17:1–12. doi: 10.1186/s12940-018-0367-0. 

 [280] Zoller O., Rhyn P., Zarn J.A., Dudler V. Urine glyphosate level as a quantitative biomarker of oral exposure. Int. J. Hyg. Environ. Health. 2020;228:113526. doi: 10.1016/j.ijheh.2020.113526. 

[281] Knudsen L.E., Hansen P.W., Mizrak S., Hansen H.K., Mørck T.A., Nielsen F., Siersma V., Mathiesen L. Biomonitoring of Danish school children and mothers including biomarkers of PBDE and glyphosate. Rev. Environ. Health. 2017;32:279–290. doi: 10.1515/reveh-2016-0067. 

 [282] Yoshioka N., Asano M., Kuse A., Mitsuhashi T., Nagasaki Y., Ueno Y. Rapid determination of glyphosate, glufosinate, bialaphos, and their major metabolites in serum by liquid chromatography–tandem mass spectrometry using hydrophilic interaction chromatography. J. Chromatogr. A. 2011;1218:3675–3680. doi: 10.1016/j.chroma.2011.04.021. 

 [283] Valle A.L., Mello F.C.C., Alves-Balvedi R.P., Rodrigues L.P., Goulart L.R. Glyphosate detection: Methods, needs and challenges. Environ. Chem. Lett. 2018;17:291–317. doi: 10.1007/s10311-018-0789-5.

 [284] Van Bruggen A.H.C., He M.M., Shin K., Mai V., Jeong K.C., Finckh M.R., Morris J.G., Jr. Environmental and health effects of the herbicide glyphosate. Sci. Total Environ. 2018;616:255–268. doi: 10.1016/j.scitotenv.2017.10.309. 

 [285] Mesnage R., Defarge N., de Vendômois J.S., Séralini G. Potential toxic effects of glyphosate and its commercial formulations below regulatory limits. Food Chem. Toxicol. 2015;84:133–153. doi: 10.1016/j.fct.2015.08.012.

 [286] Myers J.P., Antoniou M.N., Blumberg B., Carroll L., Colborn T., Everett L.G., Hansen M., Landrigan P.J., Lanphear B.P., Mesnage R., et al. Concerns over use of glyphosate-based herbicides and risks associated with exposures: A consensus statement. Environ. Health. 2016;15:19. doi: 10.1186/s12940-016-0117-0. 

[287] Agostini L.P., Dettogni R.S., dos Reis R.S., Stur E., dos Santos E.V., Ventorim D.P., Garcia F.M., Cardoso R.C., Graceli J.B., Louro I.D. Effects of glyphosate exposure on human health: Insights from epidemiological and in vitro studies. Sci. Total Environ. 2019;705:135808. doi: 10.1016/j.scitotenv.2019.135808.

[288] Kašuba V., Milić M., Rozgaj R., Kopjar N., Mladinić M., Žunec S., Vrdoljak A.L., Pavicic I., Čermak A.M.M., Pizent A., et al. Effects of low doses of glyphosate on DNA damage, cell proliferation and oxidative stress in the HepG2 cell line. Environ. Sci. Pollut. Res. 2017;24:19267–19281. doi: 10.1007/s11356-017-9438-y. 

[289] Paz-Y.-Miño C., Sanchez M.-E., Arévalo M., Muñoz M.J., Witte T., De-La-Carrera G.O., Leone P.E. Evaluation of DNA damage in an Ecuadorian population exposed to glyphosate. Genet. Mol. Biol. 2007;30:456–460. doi: 10.1590/S1415-47572007000300026. 

[290] Qiu S., Fu H., Zhou R., Yang Z., Bai G., Shi B. Toxic effects of glyphosate on intestinal morphology, antioxidant capacity and barrier function in weaned piglets. Ecotoxicol. Environ. Saf. 2020;187:109846. doi: 10.1016/j.ecoenv.2019.109846. 

[291] Thongprakaisang S., Thiantanawat A., Rangkadilok N., Suriyo T., Satayavivad J. Glyphosate induces human breast cancer cells growth via estrogen receptors. Food Chem. Toxicol. 2013;59:129–136. doi: 10.1016/j.fct.2013.05.057. 

[292] Elie-Caille C., Heu C., Guyon C., Nicod L., Nicod L.P. Morphological damages of a glyphosate-treated human keratinocyte cell line revealed by a micro- to nanoscale microscopic investigation. Cell Biol. Toxicol. 2009;26:331–339. doi: 10.1007/s10565-009-9146-6. 

[293] Koller V.J., Fürhacker M., Nersesyan A., Mišík M., Eisenbauer M., Knasmueller S. Cytotoxic and DNA-damaging properties of glyphosate and Roundup in human-derived buccal epithelial cells. Arch. Toxicol. 2012;86:805–813. doi: 10.1007/s00204-012-0804-8. 

[294] Dai P., Hu P., Tang J., Li Y., Li C. Effect of glyphosate on reproductive organs in male rat. Acta Histochem. 2016;118:519–526. doi: 10.1016/j.acthis.2016.05.009. 

[295] Hao Y., Zhang Y., Cheng J., Xu W., Xu Z., Gao J., Tao L. Adjuvant contributes Roundup’s unexpected effects on A549 cells. Environ. Res. 2020;184:109306. doi: 10.1016/j.envres.2020.109306. 

[296] Kwiatkowska M., Huras B., Bukowska B. The effect of metabolites and impurities of glyphosate on human erythrocytes (in vitro) Pestic. Biochem. Physiol. 2014;109:34–43. doi: 10.1016/j.pestbp.2014.01.003. 

[297] Defarge N., de Vendômois J.S., Séralini G. Toxicity of formulants and   herbicides and other pesticides. Toxicol. Rep. 2017;5:156–163. doi: 10.1016/j.toxrep.2017.12.025. 

[298] Seralini G.-E., Jungers G. Toxic compounds in herbicides without glyphosate. Food Chem. Toxicol. 2020;146:111770. doi: 10.1016/j.fct.2020.111770. 

[299] (Seraline and Jungers, December 2020) “Toxic compounds in herbicides without glyphosate”. Journal Food Chem Toxicology Volume 146 PMID: 33027613

Food Chem Toxicol DOI: 10.1016/j.fct.2020.111770

[300] Dataset of compounds in glyphosate-free herbicides. Seralini GE, Jungers G.Data Brief. 2020 Nov 23;33:106564. doi: 10.1016/j.dib.2020.106564. eCollection 2020 Dec.PMID: 33304961 

[301] Petroleum in Pesticides: A Need to Change Regulatory Toxicology. Jungers G, Portet-Koltalo F, Cosme J, Seralini GÉ.Toxics. 2022 Nov 6;10(11):670. doi: 10.3390/toxics10110670.PMID: 36355961 

[302] Glyphosate, Roundup and the Failures of Regulatory Assessment. Novotny E.Toxics. 2022 Jun 13;10(6):321. doi: 10.3390/toxics10060321.PMID: 35736929 

[303] Glyphosate vs. Glyphosate-Based Herbicides Exposure: A Review on Their Toxicity. Martins-Gomes C, Silva TL, Andreani T, Silva AM.J Xenobiot. 2022 Jan 17;12(1):21-40. doi: 10.3390/jox12010003.PMID: 35076536 

[304] Excretion of Heavy Metals and Glyphosate in Urine and Hair Before and After Long-Term Fasting in Humans. Grundler F, Séralini GE, Mesnage R, Peynet V, Wilhelmi de Toledo F.Front Nutr. 2021 Sep 28;8:708069. doi: 10.3389/fnut.2021.708069. eCollection 2021.PMID: 34651007 

[305] (Gillezeau C et al, January 2019) “The evidence of human exposure to glyphosate: a review.” Journal Environmental Health Volume 18 Issue 2 PMCID: PMC6322310 PMID: 30612564 https://www.ncbi.nlm.nih.gov › articles › PMC6322310 

[306] Office of Chemical Safety And Pollution Prevention . Glyphosate. Dietary exposure analysis in support of registration review. In. Washington, DC: United States Environmental Protection Agency; 2017. pp. 1–20. 

[307] Silva V, Montanarella L, Jones A, Fernandez-Ugalde O, Mol HGJ, Ritsema CJ, Geissen V. Distribution of glyphosate and aminomethylphosphonic acid (AMPA) in agricultural topsoils of the European Union. Sci Total Environ. 2018;621:1352–1359. doi: 10.1016/j.scitotenv.2017.10.093. 

[308] Curwin BD, Hein MJ, Sanderson WT, Nishioka MG, Reynolds SJ, Ward EM, Alavanja MC. Pesticide contamination inside farm and nonfarm homes. J Occup Environ Hyg. 2005;2(7):357–367. doi: 10.1080/15459620591001606. 

[309] IARC . IARC monographs on the evaluation of carcinogenic risks to humans, volume 112. Glyphosate. 2016. 

[310] Rappaport SM. Assessment of long-term exposures to toxic substances in air. Ann Occup Hyg. 1991;35(1):61–121.

[311] Acquavella JF, Alexander BH, Mandel JS, Gustin C, Baker B, Chapman P, Bleeke M. Glyphosate biomonitoring for farmers and their families: results from the farm family exposure Study. Environ Health Perspect. 2004;112(3):321–326. doi: 10.1289/ehp.6667. 

[312] Curwin BD, Hein MJ, Sanderson WT, Striley C, Heederik D, Kromhout H, Reynolds SJ, Alavanja MC. Urinary pesticide concentrations among children, mothers and fathers living in farm and non-farm households in Iowa. Ann Occup Hyg. 2007;51(1):53–65. doi: 10.1093/annhyg/mel062. 

[313] Jauhiainen A, Rasanen K, Sarantila R, Nuutinen J, Kangas J. Occupational exposure of forest workers to glyphosate during brush saw spraying work. Am Ind Hyg Assoc J. 1991;52(2):61–64. doi: 10.1080/15298669191364334. 

[314] Connolly A, Jones K, Galea KS, Basinas I, Kenny L, McGowan P, Coggins M. Exposure assessment using human biomonitoring for glyphosate and fluroxypyr users in amenity horticulture. Int J Hyg Environ Health. 2017;220(6):1064–1073. doi: 10.1016/j.ijheh.2017.06.008. 

[315] Mesnage R, Moesch C, Grand R, Lauthier G, de Vendômois J, Gress S, Séralini G. Glyphosate exposure in a farmer’s family. J Environ Prot. 2012;3(9):1001. doi: 10.4236/jep.2012.39115. 

[316] Connolly A, Basinas I, Jones K, Galea KS, Kenny L, McGowan P, Coggins MA. Characterizing glyphosate exposures among amenity horticulturists using multiple spot urine samples. Int J Hyg Environ Health. 2018;221(7):1012–1022. doi: 10.1016/j.ijheh.2018.06.007. 

[317] Rendón-von Osten J, Dzul-Caamal R. Glyphosate residues in groundwater, drinking water and urine of subsistence farmers from intensive agriculture localities: a survey in Hopelchén, Campeche, Mexico. Int J Envion Res Public Health. 2017;14:595. doi: 10.3390/ijerph14060595. 

[318] Jayasumana C, Gunatilake S, Siribaddana S. Simultaneous exposure to multiple heavy metals and glyphosate may contribute to Sri Lankan agricultural nephropathy. BMC Nephrol. 2015;16:103. doi: 10.1186/s12882-015-0109-2. 

[319] Connolly A, Leahy M, Jones K, Kenny L, Coggins MA. Glyphosate in Irish adults - a pilot study in 2017. Environ Res. 2018;165:235–236. doi: 10.1016/j.envres.2018.04.025. 

[320] Kongtip P, Nankongnab N, Phupancharoensuk R, Palarach C, Sujirarat D, Sangprasert S, Sermsuk M, Sawattrakool N, Woskie SR. Glyphosate and Paraquat in maternal and fetal serums in Thai women. J Agromedicine. 2017;22(3):282–289. doi: 10.1080/1059924X.2017.1319315. 

[321] Aris A, Leblanc S. Maternal and fetal exposure to pesticides associated to genetically modified foods in eastern townships of Quebec, Canada. Reprod Toxicol. 2011;31(4):528–533. doi: 10.1016/j.reprotox.2011.02.004. 

[322] Parvez S, Gerona RR, Proctor C, Friesen M, Ashby JL, Reiter JL, Lui Z, Winchester PD. Glyphosate exposure in pregnancy and shortened gestational length: a prospective Indiana birth cohort study. Environ Health. 2018;17(1):23. doi: 10.1186/s12940-018-0367-0. 

[323] Knudsen LE, Hansen PW, Mizrak S, Hansen HK, Morck TA, Nielsen F, Siersma V, Mathiesen L. Biomonitoring of Danish school children and mothers including biomarkers of PBDE and glyphosate. Rev Environ Health. 2017;32(3):279–290. doi: 10.1515/reveh-2016-0067. 

[324] Krüger M, Schledorn P, Schrödl W, Hoppe H-W, Lutz W, Shehata AA. Detection of Glyphosate residues in animals and humans. J Environ Anal Toxicol. 2014;4(2):1–5.

 

[325] Conrad A, Schroter-Kermani C, Hoppe HW, Ruther M, Pieper S, Kolossa-Gehring M. Glyphosate in German adults - time trend (2001 to 2015) of human exposure to a widely used herbicide. Int J Hyg Environ Health. 2017;220(1):8–16. doi: 10.1016/j.ijheh.2016.09.016. 

[326] Determination of Glyphosate Residues in Human UrineSamples from 18 European Countries. 2018. https://www.foeeurope.org/weed-killer-glyphosate-found-human-urine-across-Europe-130613. Accessed 2 April 2018.

[327] Varona M, Henao GL, Diaz S, Lancheros A, Murcia A, Rodriguez N, Alvarez VH. Effects of aerial applications of the herbicide glyphosate and insecticides on human health. Biomedica. 2009;29(3):456–475. doi: 10.7705/biomedica.v29i3.16. 

[328] Mills PJ, Kania-Korwel I, Fagan J, McEvoy LK, Laughlin GA, Barrett-Connor E. Excretion of the herbicide Glyphosate in older adults between 1993 and 2016. JAMA. 2017;318(16):1610–1611. doi: 10.1001/jama.2017.11726. 

[329] Curwin BD, Hein MJ, Sanderson WT, Striley C, Heederik D, Kromhout H, Reynolds SJ, Alavanja MC. Pesticide dose estimates for children of Iowa farmers and non-farmers. Environ Res. 2007;105(3):307–315. doi: 10.1016/j.envres.2007.06.001. 

[330] Landrigan PJ, Goldman LR. Children's vulnerability to toxic chemicals: a challenge and opportunity to strengthen health and environmental policy. Health Aff (Millwood) 2011;30(5):842–850. doi: 10.1377/hlthaff.2011.0151. 

[331] (Indirakshi J et al, March 2017) “Toxic Epidermal Necrolysis and Acute Kidney Injury due to Glyphosate Ingestion.” Indian Journal of Critical Care Medicine Volume 21 Issue 3 pages 167-169 PMCID: PMC5363107 PMID: 28400689 https://www.ncbi.nlm.nih.gov › articles › PMC5363107

[332] Han SK, Jeong J, Yeom S, Ryu J, Park S. Use of a lipid emulsion in a patient with refractory hypotension caused by glyphosate-surfactant herbicide. Clin Toxicol (Phila) 2010;48:566–8. 

[333] Amerio P, Motta A, Toto P, Pour SM, Pajand R, Feliciani C, et al. Skin toxicity from glyphosate-surfactant formulation. J Toxicol Clin Toxicol. 2004;42:317–9. 

[334]  Temple WA, Smith NA. Glyphosate herbicide poisoning experience in New Zealand. N Z Med J. 1992;105:173–4. 

[335] Stella J, Ryan M. Glyphosate herbicide formulation: A potentially lethal ingestion. Emerg Med Australas. 2004;16:235–9. 

[336] Lee HL, Chen KW, Chi CH, Huang JJ, Tsai LM. Clinical presentations and prognostic factors of a glyphosate-surfactant herbicide intoxication: A review of 131 cases. Acad Emerg Med. 2000;7:906–10. 

[337] Talbot A, Ku TS, Chen CL, Li GC, Li HP. Glyphosate levels in acute roundup herbicide poisoning.1994 toxicology world congress abstracts. Ann Emerg Med. 1995;26:717

[338] Gil HW, Kim SJ, Yang JO, Lee EY, Hong SY. Clinical outcome of hemoperfusion in poisoned patients. Blood Purif. 2010;30:84–8. 

[339] (Novotny E, June 2022) “Glyphosate, Roundup and the Failures of Regulatory Assessment”. Journal Toxics Volume 10 Issue 6 page 321 PMCID: PMC9229215 PMID: 3576929 https://www.ncbi.nlm.nih.gov › articles › PMC9229215

[340] Torretta V., Katsoyiannis I.A., Viotti P., Rada E.C. Critical review of the effects of glyphosate exposure to the environment and humans through the food supply chain. Sustainability. 2018;10:950. doi: 10.3390/su10040950. 

[341] Swanson N.L., Leu A., Abrahamson J., Wallet B. Genetically engineered crops, glyphosate and the deterioration of health in the United States of America. [(accessed on 4 June 2022)];J. Org. Syst. 2014 9:6–37. Available online: https://www.organic-systems.org/journal/92/JOS_Volume-9_Number-2_Nov_2014-Swanson-et-al.pdf 

[342] Court of Justice of the European Union Press Release No 126/19. Oct 1, 2019. [(accessed on 4 June 2022)]. Available online: https://curia.europa.eu/jcms/upload/docs/application/pdf/2019-10/cp190126en.pdf

[343] European Food Safety Agency Glyphosate: EFSA and ECHA Update Timelines for Assessment. May, 2022. [(accessed on 4 June 2022)]. Available online: https://www.efsa.europa.eu/en/news/glyphosate-efsa-and-echa-update-timelines-assessments

[344] European Food Safety Authority Glyphosate: EFSA and ECHA Launch Consultations. Sep 23, 2021. [(accessed on 4 June 2022)]. Available online: https://www.efsa.europa.eu/en/news/glyphosate-efsa-and-echa-launch-consultations

 [345] Assessment Group on Glyphosate Procedure and Outcome of the Draft Renewal Assessment Report on Glyphosate. Jun, 2021. [(accessed on 4 June 2022)]. Available online: https://ec.europa.eu/food/system/files/2021-06/pesticides_aas_agg_report_202106.pdf

[346] Székács A., Darvas B. Re-registration challenges of glyphosate in the European Union. Front. Environ. Sci. 2018;6:78. doi: 10.3389/fenvs.2018.00078. 

 [347] Robinson C., Portier C.J., Cavoski A., Mesnage R., Roger A., Clausing P., Whaley P., Muilerman H., Lyssimachou A. Achieving a high level of protection from pesticides in Europe: Problems with the current risk assessment procedure and solutions. Eur. J. Risk Regul. 2020;11:450–480. doi: 10.1017/err.2020.18. 

[348] European Food Safety Authority Glyphosate: EU Regulators Begin Review of Renewal Assessment. Jun 15, 2021. [(accessed on 4 June 2022)]. Available online: https://www.efsa.europa.eu/en/news/glyphosate-eu-regulators-begin-review-renewal-assessments

[349] Bayer Glyphosate Renewal in the EU. Apr, 2022. [(accessed on 4 June 2022)]. Available online: https://www.bayer.com/en/agriculture/glyphosateeu

[350]European Food Safety Authority Glyphosate. 2021 or 2022. [(accessed on 4 June 2022)]; Available online: https://www.efsa.europa.eu/en/topics/topic/glyphosate

[351] EUCHEMS Newsletter ECHA and EFSA Begin Reviewing Glyphosate Renewal Assessments. Jul, 2021. [(accessed on 4 June 2022)]. Available online: https://www.euchems.eu/newsletters/echa-efsa-glyphosate-renewal/

[352] Meacher M. Seeds of Deception: Exposing Corporate and Government Lies about the Safety of Genetically Engineered Food. 1st ed. Yes! Books; Fairfield, IA, USA: 2003. Foreword to Jeffrey M. Smith. 

[353] Corporate Europe Observatory and Earth Open Source, Conflicts on the Menu. 2012. [(accessed on 4 June 2022)]. Available online: https://corporateeurope.org/en/efsa/2012/02/conflicts-menu

[354] Corporate Europe Observatory Conflicts of Interest Scandals at EFSA: A Non-Exhaustive Chronology of Recent Events. 2020–2022. [(accessed on 4 June 2022)]. Available online: https://corporateeurope.org/en/food-and-agriculture/efsa/chronology

[355] European Food Safety Authority EFSA’s Policy on Independence: How the European Food Safety Authority Assures the Impartiality of Professionals Contributing to Its Operations. Jun, 2017. [(accessed on 4 June 2022)]. Available online: https://www.efsa.europa.eu/sites/default/files/corporate_publications/files/policy_independence.pdf

[356] Corporate Europe Observatory Nearly Half of Experts at EFSA Have Conflicts of Interest. Jun, 2017. [(accessed on 4 June 2022)]. Available online: https://corporateeurope.org/en/pressreleases/2017/06/nearly-half-experts-european-food-safety-authority-have-financial-conflicts

[357] European Food Safety Authority Transparency in Risk Assessment: A New Era Begins. Mar 25, 2021. [(accessed on 4 June 2022)]. Available online: https://www.efsa.europa.eu/en/news/transparency-risk-assessment-new-era-begins

[358] Greenpeace ECHA Response Heightens Rather than Alleviates Conflicts of Interest Concerns. Mar, 2017. [(accessed on 4 June 2022)]. Available online: https://www.greenpeace.org/eu-unit/issues/nature-food/1309/echa-response-heightens-rather-than-alleviates-conflict-of-interest-concerns/

[359] European Chemicals Agency Reply by ECHA to 2nd Letter of Greenpeace. Mar, 2017. [(accessed on 4 June 2022)]. Available online: https://www.greenpeace.org/static/planet4-eu-unit-stateless/2018/08/a4c7c138-a4c7c138-20170310-echa-reply-to-greenpeace-on-conflicts-of-interest-glyphosate.pdf

[360] Corporate Europe Observatory Dangerous Confidence in “Good Laboratory Practice” [Short Version] 2020. [(accessed on 4 June 2022)]. Available online: https://corporateeurope.org/en/2020/05/dangerous-confidence-good-laboratory-practice

[361] Robinson C., Matthews J. Independent Expert Bodies Contest Key Assertions of Favourable EU Glyphosate Assessment. Feb, 2022. [(accessed on 4 June 2022)]. Available online: https://www.gmwatch.org/en/106-news/latest-news/19995-independent-expert-bodies-contest-key-assertions-of-favourable-eu-glyphosate-assessment

[362] International Agency for Research on Cancer. World Health Organization IARC Monographs Volume 112: Evaluation of Five Organophosphate Insecticides and Herbicides. Mar, 2015. [(accessed on 4 June 2022)]. Available online: https://www.iarc.who.int/wp-content/uploads/2018/07/MonographVolume112-1.pdf

[363] Corporate Europe Observatory The Glyphosate Saga, & “Independent Scientific Advice” According to Germany, the UK and France. Apr, 2015. [(accessed on 4 June 2022)]. Available online: https://corporateeurope.org/en/food-and-agriculture/2015/04/glyphosate-saga-independent-scientific-advice-according-germany-uk

[364] Neslen A. The Guardian. EU Report on Weedkiller Safety Copied Text from Monsanto Study. Sep 15, 2017. [(accessed on 4 June 2022)]. Available online: https://www.theguardian.com/environment/2017/sep/15/eu-report-on-weedkiller-safety-copied-text-from-monsanto-study

[365] Corporate Europe Observatory Industry Edited EFSA’s Glyphosate Evaluation ahead of Publication. Jul, 2017. [(accessed on 4 June 2022)]. Available online: https://corporateeurope.org/en/efsa/2017/07/industry-edited-efsa-glyphosate-evaluation-ahead-publication

[366] Clausing P., Robinson C., Burtscher-Schade H. Glyphosate and Cancer: Authorities Systematically Breach Regulations. Jul, 2017. [(accessed on 4 June 2022)]. Available online: https://www.global2000.at/sites/global/files/Glyphosate_authorities_breach_regulations.pdf

[367] General Court of the European Union Press Release No 25/19, March 2019. [(accessed on 4 June 2022)]. Available online: https://curia.europa.eu/jcms/upload/docs/application/pdf/2019-03/cp190025en.pdf

[368] Kahr B., McHenry L.B., Hollingsworth M.D. Academic Publishing and Scientific Integrity: Case Studies of Editorial Interference by Taylor & Francis. 2019. [(accessed on 4 June 2022)]. Available online: https://www.researchgate.net/publication/332403079_Academic_Publishing_and_Scientific_Integrity_Case_Studies_of_Editorial_Interference_by_Taylor_Francis

[369] McHenry L.B. The Monsanto Papers: Poisoning the Scientific Well. Int. J. Risk Saf. Med. 2018;29:193–205. doi: 10.3233/JRS-180028. 

[370] Séralini G.-E., Douzelet J. The Monsanto Papers: Corruption of Science and Grievous Harm to Public Health. Skyhorse Publishing; New York, NY, USA: 2020. translated from French by Karter, L. English translation 2021. 

[371] Novotny E. Retraction by Corruption: The Séralini 2012 Paper. J. Biolog. Phys. Chem. 2018;18:32–56. doi: 10.4024/19NO17F.jbpc.18.01.

[372] Gillam C. Whitewash: The Story of a Weed Killer, Cancer, and the Corruption of Science. Island Press; Washington, DC, USA: Covelo, CA, USA: London, UK: 2017.

[373] The Detox Project The Poison in Our Daily Bread: Pre-Harvest Spraying of Monsanto-Bayer’s Roundup Is Leading to Contamination of Essential “Healthy” Foods. 2022. [(accessed on 4 June 2022)]. Available online: https://detoxproject.org/wp-content/uploads/2022/02/Glyphosate_Contamination_Report_Final1.pdf

[374] The Soil Association The Impact of Glyphosate on Soil Health: The Evidence to Date. 2016–2022. [(accessed on 4 June 2022)]. Available online: https://www.soilassociation.org/media/7202/glyphosate-and-soil-health-full-report.pdf

[375] Sustainable Pulse. Monsanto Knew of Glyphosate Cancer Link 35 Years Ago. April 2015, from GM-Free Cymru Special Report. Apr 8, 2015. [(accessed on 4 June 2022)]. Available online: http://sustainablepulse.com/2015/04/09/monsanto-knew-of-glyphosate-cancer-link-35-years-ago/#.WYC-MxTw_mY

[376] Silver M.K., Fernandez J., Tang J., McDade A., Sabino J., Rosario Z., Vega C.V., Alshawabkeh A., Cordero J.F., Meeker J.D. Prenatal exposure to glyphosate and its environmental degradate, aminomethylphosphonic acid (AMPA), and preterm birth: A nested case-control study in the PROTECT cohort (Puerto Rico) Environ. Health Perspect. 2021;129:057011. doi: 10.1289/EHP7295. 

[377] Avila-Vazquez M., Etchegoyen A., Maturano E., Ruderman L. Cancer and detrimental reproductive effects in an Argentine agricultural community environmentally exposed to glyphosate. [(accessed on 4 June 2022)];J. Biol. Phys. Chem. 2015 15:97–110. doi: 10.4024/09VA15A.jbpc.15.03. Available online: http://www.amsi.ge/jbpc/31515/15-3-abs-2.htm 

[378] Mao Q., Manservisi F., Panzacchi S., Mandrioli D., Menghetti I., Vornoli A., Bua L., Falcioni L., Lesseur C., Chen J., et al. The Ramazzini Institute 13-week pilot study on glyphosate and Roundup administered at human-equivalent dose to Sprague Dawley rats: Effects on the microbiome. Environ. Health. 2018;17:50. doi: 10.1186/s12940-018-0394-x.

[379] Grau D., Grau N., Gasquel Q., Paroissin C., Stratonovitch C., Lairon D., Devault D.A., Cristofaro J.D. Quantifiable urine glyphosate levels detected in 99% of the French population, with higher values in men, in younger people, and in farmers. Environ. Sci. Pollut. Res. 2022;29:32882–32893. doi: 10.1007/s11356-021-18110-0.

[380] EU Citizens’ Initiative, 2016 Ban Glyphosate and Protect People and the Environment from Toxic Pesticides. 2016. [(accessed on 4 June 2022)]. Available online: https://europa.eu/citizens-initiative/initiatives/details/2017/000002_en

[381]European Parliament Gather 1 Million Signatures. [(accessed on 4 June 2022)]. Available online: https://www.europarl.europa.eu/at-your-service/files/be-heard/citizens-initiative/en-procedure.pdf

[382] Secrets Toxiques, Pesticides: Our Health, Their Trial. Ongoing. [(accessed on 4 June 2022)]. Available online: https://secretstoxiques-fr.translate.goog/?_x_tr_sch=http&_x_tr_sl=fr&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=sc

[383] The Carlson Law Firm Which Countries and US States Are Banning Glyphosate? Feb, 2021. [(accessed on 4 June 2022)]. Available online: https://www.carlsonattorneys.com/news-and-update/banning-roundup

[384] Reuters Staff, German Cabinet Approves Legislation to Ban Glyphosate from 2024. Feb, 2021. [(accessed on 4 June 2022)]. Available online: https://www.reuters.com/article/us-germany-farming-lawmaking/german-cabinet-approves-legislation-to-ban-glyphosate-from-2024-idUSKBN2AA1GF

[385] Reuters, Tom Hals Bayer Wins Second Straight Verdict in a Roundup Cancer Case. Dec, 2021. [(accessed on 4 June 2022)]. Available online: https://www.reuters.com/business/healthcare-pharmaceuticals/bayer-wins-second-straight-verdict-roundup-cancer-case-2021-12-09/

[385] Baum Hedlund Aristei & Goldman Monsanto Papers/Secret Documents. Jul, 2021. [(accessed on 4 June 2022)]. Available online: https://www.baumhedlundlaw.com/toxic-tort-law/monsanto-roundup-lawsuit/monsanto-secret-documents/

[386] Landrigan P.J., Belpoggi F. The Ramazzini Institute. The Need for Independent Research on the Health Effects of Glyphosate-Based Herbicides. Environ. Health. 2018;17:51. doi: 10.1186/s12940-018-0392-z. 

[387] (Sorensen FW and Gregersen M, December 1999) “Rapid lethal intoxication caused by the herbicide glyphosate-trimesium (Touchdown).” Journal Human Exp Toxicology Volume 18 Issue 12 pages 735-7 PMID: 10627661 https://pubmed.ncbi.nlm.nih.gov › ../10627661/ 

[388] (Rodriguez et al, 4 October 2021) “Editorial: Glyphosate Herbicide as Endocrine Disruptor and Probable Human Carcinogen: Current Knowledge and Future Direction.” Journal Frontiers in Endocrinology Volume 12 PMCID: PMC8524447 PMID: 34675889

https://www.ncbi.nlm.nih.gov › articles › PMC8524447

[389]  Parvez S, Gerona RR, Proctor C, Friesen M, Ashby JL, Reiter JL, et al.. Glyphosate Exposure in Pregnancy and Shortened Gestational Length: A Prospective Indiana Birth Cohort StudyEnviron Health (2018) 17:23. doi:  10.1186/s12940-018-0367-0 

[390] Rendon-von Osten J, Dzul-Caamal R. Glyphosate Residues in Groundwater, Drinking Water and Urine of Subsistence Farmers From Intensive Agriculture Localities: A Survey in Hopelchén, Campeche, MexicoInt J Environ Res Public Health (2017) 14:595. doi:  10.3390/ijerph14060595 

[391] Environmental Protection Agency (EPA) . Chemical: Glyphosate. EDSP: Weight of Evidence Analysis of Potential Interaction With the Estrogen, Androgen or Thyroid Pathways. Washington DC, USA: Office of Pesticide Programs US EPA; (2015). Available at: http://www.epa.gov/sites/production/files/2015-06/documents/glyphosate-4173002015-06-29txr0057175.pdf

[392] European Food Safety Authority (EFSA) . Peer Review of the Pesticide Risk Assessment of the Potential Endocrine Disrupting Properties of GlyphosateEFSA J (2017) 15:e04979. doi:  10.2903/j.efsa.2017.4979 

[393] Cai W, Ji Y, Song X, Guo H, Han L, Zhang F, et al.. Effects of Glyphosate Exposure on Sperm Concentration in Rodents: A Systematic Review and Meta-AnalysisEnviron Toxicol Pharmacol (2017) 55:148–55. doi:  10.1016/j.etap.2017.07.015

[394] Gastiazoro M, Durando M, Milesi M, Lorenz V, Vollmer G, Varayoud J, et al.. Glyphosate Induces Epithelial Mesenchymal Transition-Related Changes in Human Endometrial Ishikawa Cells via Estrogen Receptor PathwayMol Cell Endocrinol (2020) 510:110841. doi:  10.1016/j.mce.2020.110841

[395] Franke AA, Li X, Shvetsov YB, Lai JF. Pilot Study on the Urinary Excretion of the Glyphosate Metabolite Aminomethylphosphonic Acid and Breast Cancer Risk: The Multiethnic Cohort StudyEnviron Pollut (2021) 277:116848. doi:  10.1016/j.envpol.2021.116848 

[396] (Gasnier C et al, August 2009) “Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines.” Journal Toxicology Volume 262 Issue 3 pages 184-91 PMID: 19539684 https://pubmed.ncbi.nlm.nih.gov › ...

[397] Gasnier C., Dumont C., Benachour N., Clair E., Chagnon M.C., Séralini G.E. Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology. 2009;262:184–191. doi: 10.1016/j.tox.2009.06.006. 

[398] GM Watch Peer-Reviewed Studies on Endocrine Disruption Excluded from EU Glyphosate Assessment. Sep, 2017. [(accessed on 4 June 2022)]. Available online: https://www.gmwatch.org/en/106-news/latest-news/17869-peer-reviewed-studies-on-endocrine-disruption-excluded-from-eu-glyphosate-assessment

[399] A glyphosate-based herbicide induces necrosis and apoptosis in mature rat testicular cells in vitro, and testosterone decrease at lower levels. Clair E, Mesnage R, Travert C, Séralini GÉ.Toxicol In Vitro. 2012 Mar;26(2):269-79. doi: 10.1016/j.tiv.2011.12.009. Epub 2011 Dec 19.PMID: 22200534

[400] Alternation between toxic and proliferative effects of Roundup® on human thyroid cells at different concentrations. Dal' Bó IF, Teixeira ES, Rabi LT, Peres KC, Nascimento M, Chiamolera MI, Máximo V, Bufalo NE, Ward LS.Front Endocrinol (Lausanne). 2022 Jul 29;13:904437. doi: 10.3389/fendo.2022.904437. eCollection 2022.PMID: 35992109 

[401]  The adverse impact of herbicide Roundup Ultra Plus in human spermatozoa plasma membrane is caused by its surfactant. Torres-Badia M, Solar-Malaga S, Serrano R, Garcia-Marin LJ, Bragado MJ.Sci Rep. 2022 Jul 29;12(1):13082. doi: 10.1038/s41598-022-17023-3.PMID: 35906274 

[402] (Ingaramo P et al, December 2020) “Are glyphosate and glyphosate-based herbicides endocrine disruptors that alter female fertility?” Journal Molecular Cell Endocrinology Volume 1 PMID: 32659439 https://pubmed.ncbi.nlm.nih.gov › ...

[403] (Kalofiri P et al, 3 June 2021) “The EU endocrine disruptors’ regulation and the glyphosate controversy.”  Journal Toxicology Reports Volume 8 pages 1193-1199 PMCID: PMC8193069 PMID: 34150528 https://www.ncbi.nlm.nih.gov › articles › PMC8193069

[404] The European Food Safety Authority is preparing guidance on harmonized risk assessment methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals; European Food Safety Authority (EFSA)(2013), Scientific Opinion on the identification of pesticides to be included in cumulative assessment groups on the basis of their toxicological profile.

[405] EFSA, ECHA . 2018. Guidance for the Identification of Endocrine Disruptors in the Context of Regulations (EU) No 528/2012 and (EC) No 1107/2009; p. 135. June 2018, 16 (6) 

[406] United Nations Environment Programme (UNEP) / World Health Organization (WHO) 2012. State of the Science of Endocrine Disrupting Chemicals. 

[407] Commission Delegated Regulation (EU) 2017/2100 of 4 September 2017 setting out scientific criteria for the determination of endocrine-disrupting properties pursuant to Regulation (EU) No 528/2012 of the European Parliament and Council.

[408] Nagel Susan C., Bromfield John J. Bisphenol A: A Model Endocrine Disrupting Chemical With a New Potential Mechanism of Action. Endocrinology. 2013;154(6):1962–1964. 

[409] La Merrill. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat. Rev. Endocrinol. 2020;16:45–57. 

 [410] WHO . 2002. State of the Science of Endocrine Disrupting Chemicals. 

[411] Scientific Committee on Consumer Safety (SCCS). Memorandum on Endocrine Disruptors, December 2014.

[412] EFSA . 2013. Scientific Opinion on the Hazard Assessment of Endocrine Disruptors: Scientific Criteria for Identification of Endocrine Disruptors and Appropriateness of Existing Test Methods for Assessing Effects Mediated by These Substances on Human Health and the Environment, Supra Note 2. 

[413] Scheider J. Morphological and transcriptomic effects of endocrine modulators on the gonadal differentiation of chicken embryos: the case of tributyltin (TBT) Toxicol. Lett. 2018;284:143–151. 

[414] Manikkam M., Tracey R., Guerrero-Bosagna C., Skinner M.K. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS One. 2013;8(1) 

[415] European Food Safety Authority (EFSA) 2017. Investigation into Experimental Toxicological Properties of Plant Protection Products Having a Potential Link to Parkinson’s Disease and Childhood Leukaemia. 09 March. 

[416] Matthiessen P. Endocrine disruption in fish. Pure Appl. Chem. 2003;75(11-12):2249–2261. 

[417] COMMUNICATION FROM THE COMMISSION TO THE COUNCIL AND THE EUROPEAN PARLIAMENT Community Strategy for Endocrine Disrupters a range of substances suspected of interfering with the hormone systems of humans and wildlife. Brussels, 17.12.1999 COM(1999) 706 final.

[418] Defarge N., Spiroux de Vendômois J., Séralini G.E. Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides. Toxicol. Rep. 2018;5:156–163. 

[419] COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT AND THE COUNCIL on endocrine disruptors and the draft Commission acts setting out scientific criteria for their determination in the context of the EU legislation on plant protection products and biocidal products, Brussels, 15.6.2016 COM(2016) 350 final.

[420]Gonsioroski A., Mourikes V.E., Flaws J.A. Endocrine disruptors in water and their effects on the reproductive system. Int. J. Mol. Sci. 2020;21(6):1929. 

 [421] Commission Delegated Regulation (EU) 2017/2100 of 4 September 2017 setting out scientific criteria for the determination of endocrine-disrupting properties pursuant to Regulation (EU) No 528/2012 of the European Parliament and Council.

[422] Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties.

[423] Regulation (EC) No 396/2005 of the European Parliament and of the council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC, art. 18, par. 1(b).

[424] Ingaramo P., Alarcon R., Munoz-de-Toro M., Luque E.H. Are glyphosate and glyphosate-based herbicides endocrine disruptors that alter female fertility? Mol. Cell. Endocrinol. 2020;518:110934. 

 [425] Indicative bibliography - Anifandis G., Katsanaki K., Lagodonti G., et al., The effect of glyphosate on human sperm motility and sperm DNA fragmentation. International Research Journal of Public and Environmental Health, 2018. 15 (6). Dai, P., Hu, P., Tang, J., Li, Y., Li, C., Effect of glyphosate on reproductive organs in male rat. Acta Histochem. 2016, 118 (5), p. 519–526. Johansson, H.K.L., Schwartz, C.L., Nielsen, L.N., et al., Exposure to a glyphosate based herbicide formulation, but not glyphosate alone, has only minor effects on adult rat testis. Reproductive Toxicology, 2018, 82, p. 25–31. Romano M.A., Romano R.M., Santos L.D., et al., Glyphosate impairs male offspring reproductive development by disrupting gonadotropin expression. Archives of Toxicology, 2012, 86 (4), p. 663–673. Vanlaeys A., Dubuisson F., Seralini G.E., Travert C., Formulants of glyphosate based herbicides have more deleterious impact than glyphosate on TM4 Sertoli cells. Toxicol. Vitro: International Journal of Public Association, 2018, BIBRA 52, p. 14–22.

[426] Arcuri Al., Hendlin Y.H. The chemical anthropocene: glyphosate as a case study of pesticide exposures. Kings Law J. 2019;30(2):234–253. 

[427] EPA . 2018. Revised Glyphosate Issue Paper: Evaluation of Carcinogenic Potential.https://www.epa.gov/ingredients-used-pesticide-products/draft-human-health-and-ecological-risk-assessments-glyphosate 

[428]Landrigan P.J., Belpoggi F. The need for independent research on the health effects of glyphosate-based herbicides. Environ. Health. 2018;17(51) 

[429] El Agrebi N., Tosi S., Wilmart O., Scippo Marie-Louise, de Graaf Dirk C., Saegerman Claude. Honeybee and consumer’s exposure and risk characterisation to glyphosate-based herbicide (GBH) and its degradation product (AMPA): residues in beebread, wax, and honey. Sci. Total Environ. 2020;704:135312. 

[430] Richmond M.E. Glyphosate: a review of its global use, environmental impact, and potential health effects on humans and other species. J. Environ. Stud. Sci. 2018;8:416–434. 

[431] Munoz P., Bleak T.C., Calaf G.M. Glyphosate and the key characteristics of an endocrine disruptor: a review. Chemosphere. 2020;270:128619. 

[432] Gillezeau Ch. The evidence of human exposure to glyphosate: a review. Environ. Health. 2019;18(2) 

[433] Munoz P., Bleak T.C., Calaf G.M. Glyphosate and the key characteristics of an endocrine disruptor: a review. Chemosphere. 2020;270:128619. 

[434] Petrakis D., Vassilopoulou L., Mamoulakis C., Psycharakis C., Anifantaki A., Sifakis S., Docea A.O., Tsiaoussis J., Makrigiannakis A., Tsatsakis A.M. Endocrine disruptors leading to obesity and related diseases. Int. J. Environ. Res. Public Health. 2017;14(10):18. 

[435] Bulka C.M., Daviglus M.L., Persky V.W., Durazo-Arvizu R.A., Lash J.P., Elfassy T., Lee D.J., Ramos A.R., Tarraf W., Argos M. Association of occupational exposures with cardiovascular disease among US Hispanics/Latinos. Heart. 2019;105(6):439–448. 

[436] Howard S.G. Exposure to environmental chemicals and type 1 diabetes: an update. J. Epidemiol. Community Health. 2019 pii: jech-2018-210627.

[437] Ilyushina N., Goumenou M., Stivaktakis P.D., Vardavas A.I., Masaltsev G., Averianova N., Dmitricheva O., Revazova Y., Tsatsakis A.M., Rakitskii V. Maximum tolerated doses and erythropoiesis effects in the mouse bone marrow by 79 pesticides’ technical materials assessed with the micronucleus assay. Toxicol. Rep. 2018;6:105–110.

[438] Fountoucidou P., Veskoukis A.S., Kerasioti E., Docea A.O., Taitzoglou I.A., Liesivuori J., Tsatsakis A., Kouretas D. A mixture of routinely encountered xenobiotics induces both redox adaptations and perturbations in blood and tissues of rats after a long-term low-dose exposure regimen: the time and dose issue. Toxicol. Lett. 2019;317:24–44. 

[439] Tsatsakis A., Docea A.O., Constantin C., Calina D., Zlatian O., Nikolouzakis T.K., Stivaktakis P.D., Kalogeraki A., Liesivuori J., Tzanakakis G., Neagu M. Genotoxic, cytotoxic, and cytopathological effects in rats exposed for 18 months to a mixture of 13 chemicals in doses below NOAEL levels. Toxicol. Lett. 2019;316:154–170. 

[440] Morvillo M. Glyphosate effect: has the glyphosate controversy affected the EU’s regulatory epistemology? Eur. J. Risk Regul. 2020;11(3):422–435.  

[441] Regulation (EU) 2019/1381 of the European Parliament and of the Council of 20 June 2019 on the transparency and sustainability of the EU risk assessment in the food chain and amending Regulations (EC) No 178/2002, (EC) No 1829/2003, (EC) No 1831/2003, (EC) No 2065/2003, (EC) No 1935/2004, (EC) No 1331/2008, (EC) No 1107/2009, (EU) 2015/2283 and Directive 2001/18/EC.

[442] Clausing P. 2017. Glyphosate and Cancer: Authorities Systematically Breach Regulations, How Industry Strategized (and Regulators Colluded) in an Attempt to Save the World’s Most Widely Used Herbicide from a Ban; p. 31. GLOBAL 2000. 

[443] Bozzini E. Palgrave Macmillan; 2017. Pesticide Policy and Politics in the European Union. Regulatory Assessment, Implementation and Enforcement; p. 119. 

 [444] Clausing P., Robinson C., Burtscher-Schaden H. Pesticides and public health: an analysis of the regulatory approach to assessing the carcinogenicity of glyphosate in the European Union. J. Epidemiol. Community Health. 2018;72(8):668–672. 

[445] Burtscher- Schaden H., Clausing P., Robinson C. 2017. Glyphosate and Cancer: Buying Science, How Industry Strategized (and Regulators Colluded) in an Attempt to Save the World’s Most Widely Used Herbicide from a Ban; p. 73. GLOBAL 2000. 

[446] Rattan S., Flaws J.A. The epigenetic impacts of endocrine disruptors on female reproduction across generations. Biol. Reprod. 2019;101(3):635–644. 

[447] (Vardakas P et al, April 2022) “A Mixture of Endocrine Disruptors and the Pesticide Roundup Induce Oxidative Stress in rabbit Liver when Administered under the Long-Term Low-Dose Regimen: reinforcing the Notion of real-Life Risk Simulation..” Journal Toxics Volume 10 Issue 14 page 190. PMCID: PMC9029199 PMID: 35448451
https://www.ncbi.nlm.nih.gov › articles › PMC9029199

[448] Richardson J.R., Fitsanakis V., Westerink R.H.S., Kanthasamy A.G. Neurotoxicity of Pesticides. Acta Neuropathol. 2019;138:343–362. doi: 10.1007/s00401-019-02033-9. 

[449] Tsatsakis A.M., Kouretas D., Tzatzarakis M.N., Stivaktakis P., Tsarouhas K., Golokhvast K.S., Rakitskii V.N., Tutelyan V.A., Hernandez A.F., Rezaee R., et al. Simulating Real-Life Exposures to Uncover Possible Risks to Human Health: A Proposed Consensus for a Novel Methodological Approach. Hum. Exp. Toxicol. 2017;36:554–564. doi: 10.1177/0960327116681652

[450] Georgiadis N., Tsarouhas K., Tsitsimpikou C., Vardavas A., Rezaee R., Germanakis I., Tsatsakis A., Stagos D., Kouretas D. Pesticides and Cardiotoxicity. Where Do We Stand? Toxicol. Appl. Pharmacol. 2018;353:1–14. doi: 10.1016/j.taap.2018.06.004. 

[451] Blair A., Ritz B., Wesseling C., Freeman L.B. Pesticides and Human Health. Occup. Environ. Med. 2015;72:81–82. doi: 10.1136/oemed-2014-102454. 

[452] Mnif W., Hassine A.I.H., Bouaziz A., Bartegi A., Thomas O., Roig B. Effect of Endocrine Disruptor Pesticides: A Review. Int. J. Environ. Res. Public Health. 2011;8:2265–2303. doi: 10.3390/ijerph8062265. 

 [453] Nowak K., Ratajczak-Wrona W., Górska M., Jabłońska E. Parabens and Their Effects on the Endocrine System. Mol. Cell. Endocrinol. 2018;474:238–251. doi: 10.1016/j.mce.2018.03.014. 

[454] Kabir E.R., Rahman M.S., Rahman I. A Review on Endocrine Disruptors and Their Possible Impacts on Human Health. Environ. Toxicol. Pharmacol. 2015;40:241–258. doi: 10.1016/j.etap.2015.06.009. 

[455] Monneret C. What Is an Endocrine Disruptor? Comptes Rendus. Biol. 2017;340:403–405. doi: 10.1016/j.crvi.2017.07.004. 

 [456] Petrakis D., Vassilopoulou L., Mamoulakis C., Psycharakis C., Anifantaki A., Sifakis S., Docea A.O., Tsiaoussis J., Makrigiannakis A., Tsatsakis A.M. Endocrine Disruptors Leading to Obesity and Related Diseases. Int. J. Environ. Res. Public Health. 2017;14:1282. doi: 10.3390/ijerph14101282. 

[457] Sifakis S., Androutsopoulos V.P., Tsatsakis A.M., Spandidos D.A. Human Exposure to Endocrine Disrupting Chemicals: Effects on the Male and Female Reproductive Systems. Environ. Toxicol. Pharmacol. 2017;51:56–70. doi: 10.1016/j.etap.2017.02.024. 

[458] Prins G.S. Endocrine Disruptors and Prostate Cancer Risk. Endocr. Relat. Cancer. 2008;15:649–656. doi: 10.1677/ERC-08-0043. 

[459] Del Pup L., Mantovani A., Cavaliere C., Facchini G., Luce A., Sperlongano P., Caraglia M., Berretta M. Carcinogenetic mechanisms of endocrine disruptors in female cancers (Review) Oncol. Rep. 2016;36:603–612. doi: 10.3892/or.2016.4886. 

[460] Street M.E., Angelini S., Bernasconi S., Burgio E., Cassio A., Catellani C., Cirillo F., Deodati A., Fabbrizi E., Fanos V., et al. Current Knowledge on Endocrine Disrupting Chemicals (EDCs) from Animal Biology to Humans, from Pregnancy to Adulthood: Highlights from a National Italian Meeting. Int. J. Mol. Sci. 2018;19:1647. doi: 10.3390/ijms19061647. 

[461] Esteves P.J., Abrantes J., Baldauf H.M., BenMohamed L., Chen Y., Christensen N., González-Gallego J., Giacani L., Hu J., Kaplan G., et al. The Wide Utility of Rabbits as Models of Human Diseases. Exp. Mol. Med. 2018;50:1–10. doi: 10.1038/s12276-018-0094-1. 

[462] Larsen K., Najle R., Lifschitz A., Maté M.L., Lanusse C., Virkel G.L. Effects of Sublethal Exposure to a Glyphosate-Based Herbicide Formulation on Metabolic Activities of Different Xenobiotic-Metabolizing Enzymes in Rats. Int. J. Toxicol. 2014;33:307–318. doi: 10.1177/1091581814540481. 

[463] Abarikwu S.O., Akiri O.F., Durojaiye M.A., Adenike A. Combined Effects of Repeated Administration of Bretmont Wipeout (Glyphosate) and Ultrazin (Atrazine) on Testosterone, Oxidative Stress and Sperm Quality of Wistar Rats. Toxicol. Mech. Methods. 2014;25:70–80. doi: 10.3109/15376516.2014.989349. 

[464] Owagboriaye F., Dedeke G., Ademolu K., Olujimi O., Aladesida A., Adeleke M. Comparative Studies on Endogenic Stress Hormones, Antioxidant, Biochemical and Hematological Status of Metabolic Disturbance in Albino Rat Exposed to Roundup Herbicide and Its Active Ingredient Glyphosate. Environ. Sci. Pollut. Res. 2019;26:14502–14512. doi: 10.1007/s11356-019-04759-1. 

[465] Székács I., Fejes Á., Klátyik S., Takács E., Patkó D., Pomóthy J., Mörtl M., Horváth R., Madarász E., Darvas B., et al. Environmental and Toxicological Impacts of Glyphosate with Its Formulating Adjuvant. Int. J. Biol. Vet. Agric. Food Eng. 2014;8:212–218. 

[466]  Dvae Brito Rodrigues L., Gonçalves Costa G., Lundgren Thá E., da Silva L.R., de Oliveira R., Morais Leme D., Cestari M.M., Koppe Grisolia C., Campos Valadares M., de Oliveira G.A.R. Impact of the Glyphosate-Based Commercial Herbicide, Its Components and Its Metabolite AMPA on Non-Target Aquatic Organisms. Mutat. Res. Toxicol. Environ. Mutagen. 2019;842:94–101. doi: 10.1016/j.mrgentox.2019.05.002. 

[467] Astiz M., de Alaniz M.J.T., Marra C.A. Antioxidant Defense System in Rats Simultaneously Intoxicated with Agrochemicals. Environ. Toxicol. Pharm. 2009;28:465–473. doi: 10.1016/j.etap.2009.07.009. 

[468] El-Shenawy N.S. Oxidative Stress Responses of Rats Exposed to Roundup and Its Active Ingredient Glyphosate. Environ. Toxicol. Pharm. 2009;28:379–385. doi: 10.1016/j.etap.2009.06.001. 

[469] Çavuşoǧlu K., Yapar K., Oruç E., Yalçin E. Protective Effect of Ginkgo Biloba L. Leaf Extract Against Glyphosate Toxicity in Swiss Albino Mice. J. Med. Food. 2011;14:1263–1272. doi: 10.1089/jmf.2010.0202. 

[470] Tang J., Hu P., Li Y., Win-Shwe T.T., Li C. Ion Imbalance Is Involved in the Mechanisms of Liver Oxidative Damage in Rats Exposed to Glyphosate. Front. Physiol. 2017;8:1083. doi: 10.3389/fphys.2017.01083. 

[471] (Maddalon A, July 2021) “Glyphosate-based herbicides: Evidence of immune-endocrine alteration.” Journal Toxicology PMIDz: 34246717 https://pubmed.ncbi.nlm.nih.gov › ...

[472] Co-Formulants in Glyphosate-Based Herbicides Disrupt Aromatase Activity in Human Cells below Toxic Levels. Defarge N, Takács E, Lozano VL, Mesnage R, Spiroux de Vendômois J, Séralini GE, Székács A.Int J Environ Res Public Health. 2016 Feb 26;13(3):264. doi: 10.3390/ijerph13030264.PMID: 26927151 

[473] Glyphosate Herbicide: Reproductive Outcomes and Multigenerational Effects.

Milesi MM, Lorenz V, Durando M, Rossetti MF, Varayoud J.Front Endocrinol (Lausanne). 2021 Jul 7;12:672532. doi: 10.3389/fendo.2021.672532. eCollection 2021.PMID: 34305812 

[474 ] (Anderson R et al, March 2021) “Controversies on Endocrine and Reproductive Effects of Glyphosate and Glyphosate-Based Herbicides: A Mini-Review.” Journal Frontiers Endocrinology   Volume 15 Issue 12 PMID: 33790858 PMCID: PMC8006305

[475] Zoller O, Rhyn P, Zarn JA, Dudler V. Urine glyphosate level as a quantitative biomarker of oral exposure. Int J Hyg Environ Health (2020) 228:113526. 10.1016/j.ijheh.2020.113526

[476] Horn S, Pieters R, Bøhn T. May agricultural water sources containing mixtures of agrochemicals cause hormonal disturbances? Sci Total Environ (2020) 711:134862. 10.1016/j.scitotenv.2019.134862 – 

[477] Levine SL, Webb EG, Saltmiras DA. Review and analysis of the potential for glyphosate to interact with the estrogen, androgen and thyroid pathways. Pest Manag Sci (2020) 76:2886–906. 10.1002/ps.5983

[478] Lorenz V, Pacini G, Luque EH, Varayoud J, Milesi MM. Perinatal exposure to glyphosate or a glyphosate-based formulation disrupts hormonal and uterine milieu during the receptive state in rats. Food Chem Toxicol (2020) 143:111560. 10.1016/j.fct.2020.111560

[479] USEPA . EDSP: Weight of evidence analysis of potential interaction with the estrogen, androgen or thyroid pathways. (2015) 70:1–62. Available at: https://napavalleyregister.com/edsp-weight-of-evidence-analysis-of-poten....

[480] European Food Safety Authority . Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate. EFSA J (2015) 13:1–107. 10.2903/j.efsa.2015.4302

[481] Kassotis CD, Vandenberg LN, Demeneix BA, Porta M, Slama R, Trasande L. Endocrine-disrupting chemicals: economic, regulatory, and policy implications. Lancet Diabetes Endocrinol (2020) 8:719–30. 10.1016/S2213-8587(20)30128-5

[482] Mesnage R, Phedonos A, Biserni M, Arno M, Balu S, Corton JC, et al. . Evaluation of estrogen receptor alpha activation by glyphosate-based herbicide constituents. Food Chem Toxicol (2017) 108:30–42. 10.1016/j.fct.2017.07.025

[483] Kojima H, Katsura E, Takeuchi S, Niiyama K, Kobayashi K. Screening for estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using Chinese hamster ovary cells. Environ Health Perspect (2004) 112:524–31. 10.1289/ehp.6649

[484] Tóth G, Háhn J, Radó J, Szalai DA, Kriszt B, Szoboszlay S. Cytotoxicity and hormonal activity of glyphosate-based herbicides. Environ Pollut (2020) 265:1–12. 10.1016/j.envpol.2020.115027

[485] Pandey A, Rudraiah M. Analysis of endocrine disruption effect of Roundup® in adrenal gland of male rats. Toxicol Rep (2015) 2:1075–85. 10.1016/j.toxrep.2015.07.021 –

[486] Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev (2011) 32:81–151. 10.1210/er.2010-0013

[487] Ren X, Li R, Liu J, Huang K, Wu S, Li Y, et al. . Effects of glyphosate on the ovarian function of pregnant mice, the secretion of hormones and the sex ratio of their fetuses. Environ Pollut (2018) 243:833–41. 10.1016/j.envpol.2018.09.049 

[488] Romano MA, Wisniewski P, Viau P, Romano RM, Campos DA, Bernardi MM, et al. . Glyphosate impairs male offspring reproductive development by disrupting gonadotropin expression. Arch Toxicol (2012) 86:663–73. 10.1007/s00204-011-0788-9

[489] Romano RM, Romano MA, Bernardi MM, Furtado PV, Oliveira CA. Prepubertal exposure to commercial formulation of the herbicide glyphosate alters testosterone levels and testicular morphology. Arch Toxicol (2010) 84:309–17. 10.1007/s00204-009-0494-z –

[490] Ruuskanen S, Rainio MJ, Gómez-Gallego C, Selenius O, Salminen S, Collado MC, et al. . Glyphosate-based herbicides influence antioxidants, reproductive hormones and gut microbiome but not reproduction: A long-term experiment in an avian model. Environ Pollut (2020) 266:1–10. 10.1016/j.envpol.2020.115108

[491] Perego MC, Schutz LF, Caloni F, Cortinovis C, Albonico M, Spicer LJ. Evidence for direct effects of glyphosate on ovarian function: glyphosate influences steroidogenesis and proliferation of bovine granulosa but not theca cells in vitro . J Appl Toxicol (2017) 37:692–8. 10.1002/jat.3417

[492] Perego MC, Caloni F, Cortinovis C, Schutz LF, Albonico M, Tsuzukibashi D, et al. . Influence of a Roundup formulation on glyphosate effects on steroidogenesis and proliferation of bovine granulosa cells in vitro. Chemosphere (2017) 188:274–9. 10.1016/j.chemosphere.2017.09.007

[493] Gigante P, Berni M, Bussolati S, Grasselli F, Grolli S, Ramoni R, et al. . Glyphosate affects swine ovarian and adipose stromal cell functions. Anim Reprod Sci (2018) 195:185–96. 10.1016/j.anireprosci.2018.05.023

[494] Quassinti L, Maccari E, Murri O, Bramucci M. Effects of paraquat and glyphosate on steroidogenesis in gonads of the frog Rana esculenta in vitro . Pestic Biochem Physiol (2009) 93:91–5. 10.1016/j.pestbp.2008.11.006

[495] Walsh LP, McCormick C, Martin C, Stocco DM. Roundup Inhibits Steroidogenesis by Disrupting Steroidogenic Acute Regulatory (StAR) Protein Expression. Environ Health Perspect (2000) 108:769. 10.2307/3434731

[496] Richard S, Moslemi S, Sipahutar H, Benachour N, Seralini GE. Differential effects of glyphosate and roundup on human placental cells and aromatase. Environ Health Perspect (2005) 113:716–20. 10.1289/ehp.7728 

[497] Anifandis G, Katsanaki K, Lagodonti G, Messini C, Simopoulou M, Dafopoulos K, et al. . The effect of glyphosate on human sperm motility and sperm DNA fragmentation. Int J Environ Res Public Health (2018) 15:1–8. 10.3390/ijerph15061117

[498] Cassault-Meyer E, Gress S, Séralini GÉ, Galeraud-Denis I. An acute exposure to glyphosate-based herbicide alters aromatase levels in testis and sperm nuclear quality. Environ Toxicol Pharmacol (2014) 38:131–40. 10.1016/j.etap.2014.05.007

[499] Nerozzi C, Recuero S, Galeati G, Bucci D, Spinaci M, Yeste M. Effects of Roundup and its main component, glyphosate, upon mammalian sperm function and survival. Sci Rep (2020) 10:1–9. 10.1038/s41598-020-67538

[500] Pham TH, Derian L, Kervarrec C, Kernanec PY, Jegou B, Smagulova F, et al. . Perinatal exposure to glyphosate and a glyphosate-based herbicide affect spermatogenesis in mice. Toxicol Sci (2019) 169:260–71. 10.1093/toxsci

[501] Nardi J, Moras PB, Koeppe C, Dallegrave E, Leal MB, Rossato-Grando LG. Prepubertal subchronic exposure to soy milk and glyphosate leads to endocrine disruption. Food Chem Toxicol (2017) 100:247–52. 10.1016/j.fct.2016.12.030

[502] De Liz Oliveira Cavalli VL, Cattani D, Heinz Rieg CE, Pierozan P, Zanatta L, Benedetti Parisotto E, et al. . Roundup disrupts male reproductive functions by triggering calcium-mediated cell death in rat testis and Sertoli cells. Free Radic Biol Med (2013) 65:335–46. 10.1016/j.freeradbiomed.2013.06.043

[503] Teleken JL, Gomes ECZ, Marmentini C, Moi MB, Ribeiro RA, Balbo SL, et al. . Glyphosate-based herbicide exposure during pregnancy and lactation malprograms the male reproductive morphofunction in F1 offspring. J Dev Orig Health Dis (2020) 11:146–53. 10.1017/S2040174419000382

[504] Schimpf MG, Milesi MM, Luque EH, Varayoud J. Glyphosate-based herbicide enhances the uterine sensitivity to estradiol in rats. J Endocrinol (2018) 239:197–213. 10.1530/JOE-18-0207

[505] Ingaramo PI, Varayoud J, Milesi MM, Schimpf MG, Muñoz-De-toro M, Luque EH. Effects of neonatal exposure to a glyphosate-based herbicide on female rat reproduction. Reproduction (2016) 152:403–15. 10.1530/REP-16-

[506] Ingaramo PI, Varayoud J, Milesi MM, Guerrero Schimpf M, Alarcón R, Muñoz-de-Toro M, et al. . Neonatal exposure to a glyphosate-based herbicide alters uterine decidualization in rats. Reprod Toxicol (2017) 73:87–95. 10.1016/j.reprotox.2017.07.022 –

[507] Parvez S, Gerona RR, Proctor C, Friesen M, Ashby JL, Reiter JL, et al. . Glyphosate exposure in pregnancy and shortened gestational length: A prospective Indiana birth cohort study. Environ Heal A Glob Access Sci Source (2018) 17:1–12. 10.1186/s12940-018-0367-0

[508] Kubsad D, Nilsson EE, King SE, Sadler-Riggleman I, Beck D, Skinner MK. Assessment of Glyphosate Induced Epigenetic Transgenerational Inheritance of Pathologies and Sperm Epimutations: Generational Toxicology. Sci Rep (2019) 9:1–17. 10.1038/s41598-019-42860-0

[509] Vandenberg LN, Blumberg B, Antoniou MN, Benbrook CM, Carroll L, Colborn T, et al. . Is it time to reassess current safety standards for glyphosate-based herbicides? J Epidemiol Community Health (2017) 71:613–8. 10.1136/jech-2016-208463

[510] Ji H, Xu L, Wang Z, Fan X, Wu L. Differential microRNA expression in the prefrontal cortex of mouse offspring induced by glyphosate exposure during pregnancy and lactation. Exp Ther Med (2018) 15:2457–67. 10.3892/etm.2017.5669

[511] Coullery R, Pacchioni AM, Rosso SB. Exposure to glyphosate during pregnancy induces neurobehavioral alterations and downregulation of Wnt5a-CaMKII pathway. Reprod Toxicol (2020) 96:390–8. 10.1016/j.reprotox.2020.08.006


[512] (Gomes ECZ et al, 2022) “Exposure to glyphosate-based herbicide during early stages of development increases insulin sensitivity and causes liver inflammation in adult mice offspring.” Journal Einstein (Sao Paulo) PMCID: PMC9165568 PMID: 35674629 https://www.ncbi.nlm.nih.gov › articles › PMC9165568

[513] Chevalier N, Fénichel P. [Endocrine disruptors: a missing link in the pandemy of type 2 diabetes and obesity?]. Press Med. 2016;45(1):88-97. French.

[514] Owagboriaye F, Dedeke G, Ademolu K, Olujimi O, Aladesida A, Adeleke M. Comparative studies on endogenic stress hormones, antioxidant, biochemical and hematological status of metabolic disturbance in albino rat exposed to roundup herbicide and its active ingredient glyphosate. Environ Sci Pollut Res Int. 2019;26(14):14502-12.

[515] Mills PJ, Caussy C, Loomba R. Glyphosate excretion is associated with steatohepatitis and advanced liver fibrosis in patients with fatty liver disease. Clin. Gastroenterol Hepatol. 2020;18(3):741-3. 

[516] Teleken JL, Gomes EC, Marmentini C, Moi MB, Ribeiro RA, Balbo SL, et al. Glyphosate-based herbicide exposure during pregnancy and lactation malprograms the male reproductive morphofunction in F1 offspring. J Dev Orig Health Dis. 2020;11(2):146-53.

[517] Milesi MM, Lorenz V, Pacini G, Repetti MR, Demonte LD, Varayoud J, et al. Perinatal exposure to a glyphosate-based herbicide impairs female reproductive outcomes and induces second-generation adverse effects in Wistar rats. Arch Toxicol. 2018;92(8):2629-43.

[518] Rosenfeld CS. Bisphenol A and phthalate endocrine disruption of parental and social behaviors. Front Neurosci. 2015;9:57.

[519] Palanza P, Nagel SC, Parmigiani S, Vom Saal FS. Perinatal exposure to endocrine disruptors: sex, timing and behavioral endpoints. Curr Opin Behav Sci. 2016;7:69-75. 

[520] (Dal”Bo IF et al, 2022) “Alternation between toxic and proliferative effects of Roundup on human thyroid cells at different concentrations.” Journal Frontiers in Endocrinology Volume 29 Issue 13 PMID: 35992109 PMCID: PMC9382701 https://pubmed.ncbi.nlm.nih.gov › ...

[521] Deng Y, Li H, Wang M, Li N, Tian T, Wu Y, et al. . Global burden of thyroid cancer from 1990 to 2017. JAMA network Open (2020) 3(6):e208759. doi: 10.1001/jamanetworkopen.2020.8759 - DOI 

[522] Xu B, Ghossein R. Evolution of the histologic classification of thyroid neoplasms and its impact on clinical management. Eur J Surg Oncol J Eur Soc Surg Oncol Br Assoc Surg Oncol (2018) 44(3):338–47. doi: 10.1016/j.ejso.2017.05.002

[523] Ozen S, Darcan S. Effects of environmental endocrine disruptors on pubertal development. J Clin Res Pediatr endocrinol (2011) 3(1):1–6. doi: 10.4274/jcrpe.v3i1.01

[524] Myers JP, Antoniou MN, Blumberg B, Carroll L, Colborn T, Everett LG, et al. . Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environ Health Global Access Sci source (2016) 15:19. doi: 10.1186/s12940-016-0117-0

[525] IARC . IARC monographs volume 112: evaluation of five organophosphate insecticides and herbicides (2015). Available at: https://www.iarc.who.int/wp-content/uploads/2018/07/MonographVolume112.pdf (Accessed 11/16/21). 

[526] Munoz JP, Bleak TC, Calaf GM. Glyphosate and the key characteristics of an endocrine disruptor: A review. Chemosphere (2021) 270:128619. doi: 10.1016/j.chemosphere.2020.128619

[527] Rendon-von Osten J, Dzul-Caamal R. Glyphosate residues in groundwater, drinking water and urine of subsistence farmers from intensive agriculture localities: A survey in hopelchen, campeche, Mexico. Int J Environ Res Public Health (2017) 14(6):1–13. doi: 10.3390/ijerph14060595

[528] Kolakowski BM, Miller L, Murray A, Leclair A, Bietlot H, van de Riet JM. Analysis of glyphosate residues in foods from the Canadian retail markets between 2015 and 2017. J Agric Food Chem (2020) 68(18):5201–11. doi: 10.1021/acs.jafc.9b07819

[529] (Milesi MM et al, 2021) “Glyphosate Herbicide: Reproductive Outcomes and Multigenerational Effects.” Journal Frontiers in Endocrinology Volume 12 PMCID: PMC8293380 PMID: 34305812 https://www.ncbi.nlm.nih.gov › articles › PMC8293380

[530]  Kongtip P, Nankongnab N, Phupancharoensuk R, Palarach C, Sujirarat D, Sangprasert S, et al.. Glyphosate and Paraquat in Maternal and Fetal Serums in Thai WomenJ Agromedicine (2017) 22:282–9.   10.1080/1059924X.2017.1319315

[531]  Parvez S, Gerona RR, Proctor C, Friesen M, Ashby JL, Reiter JL, et al.. Glyphosate Exposure in Pregnancy and Shortened Gestational Length: A Prospective Indiana Birth Cohort StudyEnviron Health (2018) 17:23.   10.1186/s12940-018-0367-0 

[532]  Stajnko A, Tratnik JS, Kosjek T, Mazej D, Jagodic M, Erzen I, et al.. Seasonal Glyphosate and AMPA Levels in Urine of Children and Adolescents Living in Rural Regions of Northeastern SloveniaEnviron Int (2020) 143:105985.   10.1016/j.envint.2020.105985

[533] Zhang F, Xu Y, Liu X, Pan L, Ding E, Dou J, et al.. Concentration Distribution and Analysis of Urinary Glyphosate and its Metabolites in Occupationally Exposed Workers in Eastern ChinaInt J Environ Res Public Health (2020) 17:2943.  10.3390/ijerph17082943

[534] Mose T, Kjaerstad MB, Mathiesen L, Nielsen JB, Edelfors S, Knudsen LE. Placental Passage of Benzoic Acid, Caffeine, and Glyphosate in an Ex Vivo Human Perfusion SystemJ Toxicol Environ Health A (2008) 71:984–91.   10.1080/01932690801934513

[535] Poulsen MS, Rytting E, Mose T, Knudsen LE. Modeling Placental Transport: Correlation of In Vitro BeWo Cell Permeability and Ex Vivo Human Placental PerfusionToxicol In Vitro (2009) 23:1380–6.   10.1016/j.tiv.2009.07.028

[536]  Bai SH, Ogbourne SM. Glyphosate: Environmental Contamination, Toxicity and Potential Risks to Human Health Via Food ContaminationEnviron Sci Pollut Res Int (2016) 23:18988–9001.   10.1007/s11356-016-7425-3

 [537] Rodrigues NR, Ferreira de Souza AP. Occurrence of Glyphosate and AMPA Residues in Soy-Based Infant Formula Sold in BrazilFood Addit Contam (2018) 35:723–30.   10.1080/19440049.2017.1419286

 [538] Rubio F, Guo E, Kamp L. Survey of Glyphosate Residues in Honey, Corn and Soy ProductsJ Environ Anal Toxicol (2014) 4:249.   10.4172/2161-0525.1000249

[539] Mesnage R, Antoniou MN. Ignoring Adjuvant Toxicity Falsifies the Safety Profile of Commercial PesticidesFront Public Health (2018) 5:361.   10.3389/fpubh.2017.00361 

[540] Defarge N, Takács E, Lozano VL, Mesnage R, Spiroux de Vendômois J, Seralini GE, et al.. Co-Formulants in Glyphosate-Based Herbicides Disrupt Aromatase Activity in Human Cells Below Toxic LevelsInt J Environ Res Public Health (2016) 13:264.   10.3390/ijerph13030264

[541] Mesnage R, Defarge N, Spiroux de Vendômois J, Seralini GE. Major Pesticides Are More Toxic to Human Cells Than Their Declared Active PrinciplesBioMed Res Int (2014) 2014:179691.   10.1155/2014/179691 

[542] Lorenz V, Pacini G, Luque EH, Varayoud J, Milesi MM. Perinatal Exposure to Glyphosate or a Glyphosate-Based Formulation Disrupts Hormonal and Uterine Milieu During the Receptive State in RatsFood Chem Toxicol (2020) 143:111560.   10.1016/j.fct.2020.111560

[544] Pham TH, Derian L, Kervarrec C, Kernanec P-Y, Jégou B, Smagulova F, et al.. Perinatal Exposure to Glyphosate and a Glyphosate-Based Herbicide Affect Spermatogenesis in MiceToxicol Sci (2019) 169:260–71.   10.1093/toxsci/kfz039

[545] Perego MC, Schutz LF, Caloni F, Cortinovis C, Albonico M, Spicer LJ. Evidence for Direct Effects of Glyphosate on Ovarian Function: Glyphosate Influences Steroidogenesis and Proliferation of Bovine Granulosa But Not Theca Cells In Vitro J Appl Toxicol (2017) 37:692–8.   10.1002/jat.3417

[546] Ingaramo PI, Varayoud J, Milesi MM, Guerrero Schimpf M, Muñoz de Toro M, Luque EH. Effects of Neonatal Exposure to a Glyphosate-Based Herbicide on Female Rat ReproductionReproduction (2016) 152:403–15.   10.1530/REP-16-0171

[547] Guerrero Schimpf M, Milesi MM, Ingaramo P, Luque E, Varayoud J. Neonatal Exposure to a Glyphosate-Based Herbicide Alters the Development of the Rat UterusToxicology (2017) 376:2–14.   10.1016/j.tox.2016.06.004

[548] Ren X, Li R, Liu J, Huang K, Wu S, Li Y, et al.. Effects of Glyphosate on the Ovarian Function of Pregnant Mice, the Secretion of Hormones and the Sex Ratio of Their FetusesEnviron Pollut (2018) 243:833–41.   10.1016/j.envpol.2018.09.049

[549] Lorenz V, Milesi MM, Guerrero Schimpf M, Luque EH, Varayoud J. Epigenetic Disruption of Estrogen Receptor Alpha Is Induced by a Glyphosate-Based Herbicide in the Preimplantation Uterus of RatsMol Cell Endocrinol (2019) 480:133–41.   10.1016/j.mce.2018.10.022

[550] Kubsad D, Nilsson EE, King SE, Sadler-Riggleman I, Beck D, Skinner MK. Assessment of Glyphosate Induced Epigenetic Transgenerational Inheritance of Pathologies and Sperm Epimutations: Generational ToxicologySci Rep (2019) 9:6372.   10.1038/s41598-019-42860-0 

[551] Ben Maamar M, Beck D, Nilsson EE, Kubsad D, Skinner MK. Epigenome-Wide Association Study for Glyphosate Induced Transgenerational Sperm DNA Methylation and Histone Retention Epigenetic Biomarkers for DiseaseEpigenetics (2020) 1–18.   10.1080/15592294.2020.1853319 

[552] Environmental Protection Agency (EPA) . Chemical: Glyphosate. EDSP: Weight of Evidence Analysis of Potential Interaction With the Estrogen, Androgen or Thyroid Pathways. Washington DC, USA: Office of Pesticide Programs US EPA; (2015). Available at: http://www.epa.gov/sites/production/files/2015-06/documents/glyphosate-4173002015-06-29txr0057175.pdf

[553] European Food Safety Authority (EFSA) . Peer Review of the Pesticide Risk Assessment of the Potential Endocrine Disrupting Properties of GlyphosateEFSA J (2017) 15:e04979.   10.2903/j.efsa.2017.4979

[554] Llop S, Murcia M, Iñiguez C, Roca M, González L, Yusà V, et al.. Distributions and Determinants of Urinary Biomarkers of Organophosphate Pesticide Exposure in a Prospective Spanish Birth Cohort StudyEnviron Health (2017) 16:46.   10.1186/s12940-017-0255-z 

[555]  Lu C, Barr Dana B, Pearson Melanie A, Waller Lance A. Dietary Intake and its Contribution to Longitudinal Organophosphorus Pesticide Exposure in Urban/Suburban ChildrenEnviron Health Perspect (2008) 116:537–42.   10.1289/ehp.10912 

[556]  van den Dries MA, Pronk A, Guxens M, Spaan S, Voortman T, Jaddoe VW, et al.. Determinants of Organophosphate Pesticide Exposure in Pregnant Women: A Population-Based Cohort Study in the NetherlandInt J Hyg Environ Health (2018) 221:489–501.   10.1016/j.ijheh.2018.01.013 

[557] Pollegioni L, Schonbrunn E, Siehl D. Molecular Basis of Glyphosate Resistance-Different Approaches Through Protein EngineeringFEBS J (2011) 278:2753–66.   10.1111/j.1742-4658.2011.08214.x 

[558] Arregui MC, Lenardón A, Sanchez D, Maitre MI, Scotta R, Enrique S. Monitoring Glyphosate Residues in Transgenic Glyphosate-Resistant SoybeanPest Manag Sci (2004) 60:163–6.   10.1002/ps.775

[559] Granby K, Johannesen S, Vahl M. Analysis of Glyphosate Residues in Cereals Using Liquid Chromatography-Mass Spectrometry (LC-MS/MS)Food Addit Contam (2003) 20:692–8.   10.1080/0265203031000109477

[560] Zoller O, Rhyn P, Rupp H, Zarn JA, Geiser C. Glyphosate Residues in Swiss Market Foods: Monitoring and Risk EvaluationFood Addit Contam Part B Surveill (2018) 11:83–91.   10.1080/19393210.2017.1419509

[561] European Union . Commission Directive 2006/125/EC of 5 December 2006 on Processed Cereal-Based Foods and Baby Foods for Infants and Young ChildrenOff J Eur Union (2006) L 339/:16. 

[562] Li Z, Jennings A. Worldwide Regulations of Standard Values of Pesticides for Human Health Risk Control: A ReviewInt J Environ Res Public Health (2017) 14:826.   10.3390/ijerph14070826 

[563] The Council of the European Union . Council Directive of 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human ConsumptionOff J Eur Communities (1998) L330:32–54. 

[564] Reynoso EC, Torres E, Bettazzi F, Palchetti I. Trends and Perspectives in Immunosensors for Determination of Currently-Used Pesticides: The Case of Glyphosate, Organophosphates, and NeonicotinoidsBiosensors (2019) 9:20.   10.3390/bios9010020 

[565] Annett R, Habibi HR, Hontela A. Impact of Glyphosate and Glyphosate-Based Herbicides on the Freshwater EnvironmentJ Appl Toxicol (2014) 34:458–79.   10.1002/jat.2997

[566] Brewster DW, Warren J, Hopkins WE. Metabolism of Glyphosate in Sprague-Dawley Rats: Tissue Distribution, Identification, and Quantitation of Glyphosate-Derived Materials Following a Single Oral DoseFundam Appl Toxicol (1991) 17:43–51.   10.1016/0272-0590(91)90237-X

[567] Davies D. Glyphosate Acid: Excretion and Tissue Retention of a Single Oral Dose (1000mg/Kg) in the Rat, Unpublished report no CTL/P/4942. (1996). Zeneca Agrochemicals, Central Toxicology Laboratory, Alderley Park, Macclesfield, Cheshire, England. Submitted to WHO by Syngenta Crop Protection AG, Switzerland. 

[568] Chan P, Mahler J. NTP Technical Report on the Toxicity Studies of Glyphosate (CAS No. 1071-83-6) Administered in Dosed Feed to F344/N Rats and B6C3F1 MiceToxic Rep Ser (1992) 16:1–D3.

[569] Agency for Toxic Substances and Disease Registry (ATSDR) . Toxicological Profile for Glyphosate. Atlanta, USA: Department of Health and Human Services, Public Health Service; (2020). Available at: https://www.atsdr.cdc.gov/ToxProfiles/tp214.pdf

[570] Cho Y, Jeong W, Kim S, Choi H, You Y, Cho S, et al.. Serial Measurement of Glyphosate Blood Concentration in a Glyphosate Potassium Herbicide-Intoxicated Patient: A Case ReportAm J Emerg Med (2019) 37:e5–1600.e6: 1600.   10.1016/j.ajem.2019.04.042

[571] Connolly A, Jones K, Basinas I, Galea KS, Kenny L, McGowan P, et al.. Exploring the Half-Life of Glyphosate in Human Urine SamplesInt J Hyg Environ Health (2019) 222:205–10.   10.1016/j.ijheh.2018.09.004

[572] Honeycutt Z, Rowlands H. Glyphosate Testing Full Report: Findings in American Mothers’ Breast Milk, Urine and Water (2014). Available at: https://es.momsacrossamerica.com/glyphosate_testing_results (Accessed January 25, 2021).

[573] Steinborn A, Alder L, Michalski B, Zomer P, Bendig P, Martinez SA, et al.. Determination of Glyphosate Levels in Breast Milk Samples From Germany by LC-MS/MS and GC-MS/MSJ Agric Food Chem (2016) 64:1414–21.   10.1021/acs.jafc.5b05852

[574] Perry MJ, Mandrioli D, Belpoggi F, Manservisi F, Panzacchi S, Irwin C. Historical Evidence of Glyphosate Exposure From a US Agricultural CohortEnviron Health (2019) 18:1–4.   10.1186/s12940-019-0474-6 

[575] Nova P, Calheiros CS, Silva M. Glyphosate in Portuguese Adults - A Pilot StudyEnviron Toxicol Pharmacol (2020) 80:103462.   10.1016/j.etap.2020.103462

[576] Kiyama R, Wada-Kiyama Y. Estrogenic Endocrine Disruptors: Molecular Mechanisms of ActionEnviron Int (2015) 83:11–40.   10.1016/j.envint.2015.05.012

[577] Gastiazoro M, Durando M, Milesi M, Lorenz V, Vollmer G, Varayoud J, et al.. Glyphosate Induces Epithelial Mesenchymal Transition-Related Changes in Human Endometrial Ishikawa Cells via Estrogen Receptor PathwayMol Cell Endocrinol (2020) 510:110841.   10.1016/j.mce.2020.110841

[578] Bulun SE, Sebastian S, Takayama K, Suzuki T, Sasano H, Shozu M. The Human CYP19 (Aromatase P450) Gene: Update on Physiologic Roles and Genomic Organization of PromotersJ Steroid Biochem Molec Biol (2003) 86:219–24.   10.1016/S0960-0760(03)00359-5

[579] Carreau S. Germ Cells: A New Source of Estrogens in the Male GonadMol Cell Endocrinol (2001) 178:65–72.   10.1016/S0303-7207(01)00411-7

[580] Sanderson P, Critchley H, Williams A, Arends M, Saunders P. New Concepts for an Old Problem: The Diagnosis of Endometrial HyperplasiaHum Reprod Update (2017) 23:232–54.   10.1093/humupd/dmw042

[581] Alarcón R, Rivera OE, Ingaramo PI, Tschopp MV, Dioguardi GH, Milesi MM, et al.. Neonatal Exposure to a Glyphosate-Based Herbicide Alters the Uterine Differentiation of Prepubertal Ewe LambsEnviron Pollut (2020) 265:114874.   10.1016/j.envpol.2020.114874

[582] Inhorn MC, Patrizio P. Infertility Around the Globe: New Thinking on Gender, Reproductive Technologies and Global Movements in the 21st CenturyHum Reprod Update (2015) 21:411–26.   10.1093/humupd/dmv016

[583] Den Hond E, Tournaye H, De Sutter P, Ombelet W, Baeyens W, Covaci A, et al.. Human Exposure to Endocrine Disrupting Chemicals and Fertility: A Case–Control Study in Male Subfertility PatientsEnviron Int (2015) 84:154–60.   10.1016/j.envint.2015.07.017

[584] Chiu YH, Afeiche MC, Gaskins AJ, Williams PL, Petrozza JC, Tanrikut C, et al.. Fruit and Vegetable Intake and Their Pesticide Residues in Relation to Semen Quality Among Men From a Fertility ClinicHum Reprod (2015) 30:1342–51.   10.1093/humrep/dev064 

[585] Chiu YH, Williams PL, Gillman MW, Gaskins AJ, Mínguez-Alarcón L, Souter I, et al.. Association Between Pesticide Residue Intake From Consumption of Fruits and Vegetables and Pregnancy Outcomes Among Women Undergoing Infertility Treatment With Assisted Reproductive TechnologyJAMA Intern Med (2018) 178:17–26.   10.1001/jamainternmed.2017.5038 

[586[ Rappazzo KM, Warren JL, Davalos AD, Meyer RE, Sanders AP, Brownstein NC, et al.. Maternal Residential Exposure to Specific Agricultural Pesticide Active Ingredients and Birth Defects in a 2003-2005 North Carolina Birth CohortBirth Defects Res (2019) 111:312–23.   10.1002/bdr2.1448 

[587] Razi S, Rezaeian M, Dehkordi FG, Manshoori A, Goujani R, Vazirinejad R. Exposure to Pistachio Pesticides and Stillbirth: A Case-Control StudyEpidemiol Health (2016) 38:e2016016.   10.4178/epih.e2016016 

[588] Suhl J, Romitti PA, Rocheleau C, Cao Y, Burns TL, Conway K, et al.. Parental Occupational Pesticide Exposure and Nonsyndromic Orofacial CleftsJ Occup Environ Hyg (2018) 15:641–53.   10.1080/15459624.2018.1484127 

[589] Arbuckle TE, Lin Z, Mery LS. An Exploratory Analysis of the Effect of Pesticide Exposure on the Risk of Spontaneous Abortion in an Ontario Farm PopulationEnviron Health Perspect (2001) 109:851–7.   10.1289/ehp.01109851

[590] Milesi MM, Lorenz V, Pacini G, Repetti MR, Demonte LD, Varayoud J, et al.. Perinatal Exposure to a Glyphosate-Based Herbicide Impairs Female Reproductive Outcomes and Induces Second-Generation Adverse Effects in Wistar RatsArch Toxicol (2018) 92:2629–43.   10.1007/s00204-018-2236-6

[591] Milesi MM, Lorenz V, Beldomenico PM, Vaira S, Varayoud J, Luque EH. Response to Comments on: Perinatal Exposure to a Glyphosate-Based Herbicide Impairs Female Reproductive Outcomes and Induces Second-Generation Adverse Effects in Wistar RatsArch Toxicol (2019) 93:3635–8.   10.1007/s00204-019-02609-0

[592] EFSA . Conclusion on the Peer Review of the Pesticide Risk Assessment of the Active Substance GlyphosateEFSA J (2015) 13:4302. 10.2903/j.efsa.2015.4302 

[593] Ingaramo PI, Guerrero Schimpf M, Milesi MM, Luque EH, Varayoud J. Acute Uterine Effects and Long- Term Reproductive Alterations in Postnatally Exposed Female Rats to a Mixture of Commercial Formulations of Endosulfan and GlyphosateFood Chem Toxicol (2019) 134:110832.   10.1016/j.fct.2019.110832 

[594] Almeida LL, Teixeira ÁAC, Soares AF, Cunha FMD, Silva VAD Júnior, Vieira Filho LD, et al.. Effects of Melatonin in Rats in the Initial Third Stage of Pregnancy Exposed to Sub-Lethal Doses of HerbicidesActa Histochem (2017) 119:220–7.   10.1016/j.acthis.2017.01.003

[595] Hamdaoui L, Naifar M, Rahmouni F, Harrabi B, Ayadi F, Sahnoun Z, et al.. Subchronic Exposure to Kalach 360 SL-Induced Endocrine Disruption and Ovary Damage in Female RatsArch Physiol Biochem (2018) 124:27–34.   10.1080/13813455.2017.1352606

[596] Varayoud J, Ramos JG, Muñoz de Toro M, Luque EH. Long-Lasting Effects of Neonatal Bisphenol A Exposure on the Implantation ProcessVitam Horm (2014) 94:253–75.   10.1016/B978-0-12-800095-3.00010-9

[597] Gasnier C, Dumont C, Benachour N, Clair E, Chagnon M-C, Seralini G-E. Glyphosate-Based Herbicides Are Toxic and Endocrine Disruptors in Human Cell LinesToxicology (2009) 262:184–91.   10.1016/j.tox.2009.06.006

[598] Nazarenko TA, Kalinina EA, Knyazeva EA, Kiselev VI, Smolnikova VY, Sukhikh GT. The Role of Abnormal Hypermethylation of the HOXA10 and HOXA11 Promoters in Implantation Failures in IVF ProgramsGynecol Endocrinol (2019) 35:31–4.   10.1080/09513590.2019.1632087

[599] Skinner MK, Guerrero-Bosagna C, Haque M, Nilsson E, Bhandari R, McCarrey JR. Environmentally Induced Transgenerational Epigenetic Reprogramming of Primordial Germ Cells and the Subsequent Germ LinePloS One (2013) 8:e66318.   10.1371/journal.pone.0066318 

[600] Hagrass HA, Pasha HF, Ali AM. Estrogen Receptor Alpha (ERalpha) Promoter Methylation Status in Tumor and Serum DNA in Egyptian Breast Cancer PatientsGene (2014) 552:81–6.   10.1016/j.gene.2014.09.016

[601] Kwiatkowska M, Reszka E, Woźniak K, Jabłońska E, Michałowicz J, Bukowska B. DNA Damage and Methylation Induced by Glyphosate in Human Peripheral Blood Mononuclear Cells (In Vitro Study)Food Chem Toxicol (2017) 105:93–8.   10.1016/j.fct.2017.03.051

[602] Woźniak E, Reszka E, Jabłońska E, Balcerczyk A, Broncel M, Bukowska B. Glyphosate Affects Methylation in the Promoter Regions of Selected Tumor Suppressors as Well as Expression of Major Cell Cycle and Apoptosis Drivers in PBMCs (In Vitro Study)Toxicol In Vitro (2020) 63:104736.   10.1016/j.tiv.2019.104736

[603] Ji H, Xu L, Wang Z, Fan X, Wu L. Differential microRNA Expression in the Prefrontal Cortex of Mouse Offspring Induced by Glyphosate Exposure During Pregnancy and LactationExp Ther Med (2018) 15:2457–67.   10.3892/etm.2017.5669 

[604] Yu N, Tong Y, Zhang D, Zhao S, Fan X, Wu L, et al.. Circular RNA Expression Profiles in Hippocampus From Mice With Perinatal Glyphosate ExposureBiochem Biophys Res Commun (2018) 501:838–45.   10.1016/j.bbrc.2018.04.200

[605]. Zhang J-Y, Dai H-X, Wu Q-J, Li J, Huang Y-H, Chen Z-J, et al.. Maternal Exposure to Ambient Levels of Sulfur Dioxide and Risk of Neural Tube Defects in 14 Cities in Liaoning Province, China: A Population-Based Case–Control StudyJ Expo Sci Environ Epidemiol (2021) 2:266–75.   10.1038/s41370-020-00273-6

[606] Spinder N, Prins JR, Bergman JEH, Smidt N, Kromhout H, Boezen HM, et al.. Congenital Anomalies in the Offspring of Occupationally Exposed Mothers: A Systematic Review and Meta-Analysis of Studies Using Expert Assessment for Occupational ExposuresHum Reprod (2019) 34:903–19.   10.1093/humrep/dez033

[607] Toichuev RM, Zhilova LV, Paizildaev TR, Khametova MS, Rakhmatillaev A, Sakibaev KS, et al.. Organochlorine Pesticides in Placenta in Kyrgyzstan and the Effect on Pregnancy, Childbirth, and Newborn HealthEnviron Sci Pollut Res Int (2018) 25:31885–94.   10.1007/s11356-017-0962-6

[608] Gallegos CE, Bartos M, Bras C, Gumilar F, Antonelli MC, Minetti A. Exposure to a Glyphosate-Based Herbicide During Pregnancy and Lactation Induces Neurobehavioral Alterations in Rat OffspringNeurotoxicology (2016) 53:20–8.   10.1016/j.neuro.2015.11.015

[609] Gallegos CE, Baier CJ, Bartos M, Bras C, Domínguez S, Mónaco N, et al.. Perinatal Glyphosate-Based Herbicide Exposure in Rats Alters Brain Antioxidant Status, Glutamate and Acetylcholine Metabolism and Affects Recognition MemoryNeurotox Res (2018) 34:363–74.   10.1007/s12640-018-9894-2

[610] Ait-Bali Y, Ba-M’hamed S, Gambarotta G, Sassoè-Pognetto M, Giustetto M, Bennis M. Pre- and Postnatal Exposure to Glyphosate-Based Herbicide Causes Behavioral and Cognitive Impairments in Adult Mice: Evidence of Cortical Ad Hippocampal DysfunctionArch Toxicol (2020) 94:1703–23.   10.1007/s00204-020-02677-7

[611] Coullery R, Pacchioni AM, Rosso SB. Exposure to Glyphosate During Pregnancy Induces Neurobehavioral Alterations and Downregulation of Wnt5a-CaMKII PathwayReprod Toxicol (2020) 96:390–8.   10.1016/j.reprotox.2020.08.006

[612] de Souza JS, Laureano-Melo R, Herai RH, Da Conceição RR, Oliveira KC, Da Silva IDCG, et al.. Maternal Glyphosate-Based Herbicide Exposure Alters Antioxidant-Related Genes in the Brain and Serum Metabolites of Male Rat OffspringNeurotoxicology (2019) 74:121–31.   10.1016/j.neuro.2019.06.004

[613] Pu Y, Yang J, Chang L, Qu Y, Wang S, Zhang K, et al.. Maternal Glyphosate Exposure Causes Autism-Like Behaviors in Offspring Through Increased Expression of Soluble Epoxide HydrolaseProc Natl Acad Sci USA (2020) 117:11753.   10.1073/pnas.1922287117 

[614] Lopez-Espinosa M-J, Murcia M, Iñiguez C, Vizcaino E, Costa O, Fernández-Somoano A, et al.. Organochlorine Compounds and Ultrasound Measurements of Fetal Growth in the INMA Cohort (Spain)Environ Health Perspect (2016) 124:157–63.   10.1289/ehp.1408907 

[615] Ferguson KK, van den Dries MA, Gaillard R, Pronk A, Spaan S, Tiemeier H, et al.. Organophosphate Pesticide Exposure in Pregnancy in Association With Ultrasound and Delivery Measures of Fetal GrowthEnviron Health Perspect (2019) 127:087005.   10.1289/EHP4858

[616] Sathyanarayana S, Basso O, Karr CJ, Lozano P, Alavanja M, Sandler DP, et al.. Maternal Pesticide Use and Birth Weight in the Agricultural Health StudyJ Agromedicine (2010) 15:127–36.   10.1080/10599241003622699 

[617] Snijder CA, Roeleveld N, Velde E, Steegers EAP, Raat H, Hofman A, et al.. Occupational Exposure to Chemicals and Fetal Growth: The Generation R StudyHum Reprod (2012) 27:910–20.   10.1093/humrep/der437 

[618] Whyatt Robin M, Rauh V, Barr Dana B, Camann David E, Andrews Howard F, Garfinkel R, et al.. Prenatal Insecticide Exposures and Birth Weight and Length Among an Urban Minority CohortEnviron Health Perspect (2004) 112:1125–32.   10.1289/ehp.6641

[619] Macdonald EM, Natale R, Regnault TRH, Koval JJ, Campbell MK. Obstetric Conditions and the Placental Weight RatioPlacenta (2014) 35:582–6.   10.1016/j.placenta.2014.04.019

[620] Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME. Growth in Utero, Blood Pressure in Childhood and Adult Life, and Mortality From Cardiovascular DiseaseBMJ (1989) 298:564.   10.1136/bmj.298.6673.564

[621] Camacho JA, Allard P. Chapter 4-1. Germline and Transgenerational Impacts of Toxicant Exposures. In: McCullough SD, Dolinoy DC, editors. Toxicoepigenetics: Core Principles and Applications. Academic Press; (2019) 251–63. 10.1016/B978-0-12-812433-8.00011-3

[622] Herek JS, Vargas L, Trindade SAR, Rutkoski CF, Macagnan N, Hartmann PA, et al.. Can Environmental Concentrations of Glyphosate Affect Survival and Cause Malformation in Amphibians? Effects From a Glyphosate-Based Herbicide on Physalaemus Cuvieri and P. Gracilis (Anura: Leptodactylidae)Environ Sci Pollut Res Int (2020) 27:22619–30.   10.1007/s11356-020-08869-z

[623] Paganelli A, Gnazzo V, Acosta H, López SL, Carrasco AE. Glyphosate-Based Herbicides Produce Teratogenic Effects on Vertebrates by Impairing Retinoic Acid SignalingChem Res Toxicol (2010) 23:1586–95.   10.1021/tx1001749

[624] Williams GM, Kroes R, Munro IC. Safety Evaluation and Risk Assessment of Herbicide Roundup and Its Active Ingredient, Glyphosate, for HumansRegul Toxicol Pharmacol (2000) 31:117–65.   10.1006/rtph.1999.1371

[625] Mostafalou S, Abdollahi M. The Link of Organophosphorus Pesticides With Neurodegenerative and Neurodevelopmental Diseases Based on Evidence and MechanismsToxicology (2018) 409:44–52.   10.1016/j.tox.2018.07.014

[626] Richardson JR, Roy A, Shalat SL, Von Stein RT, Hossain MM, Buckley B, et al.. Elevated Serum Pesticide Levels and Risk for Alzheimer DiseaseJAMA Neurol (2014) 71:284–90.   10.1001/jamaneurol.2013.6030 

[627] Saeedi Saravi SS, Dehpour AR. Potential Role of Organochlorine Pesticides in the Pathogenesis of Neurodevelopmental, Neurodegenerative, and Neurobehavioral Disorders: A ReviewLife Sci (2016) 145:255–64.   10.1016/j.lfs.2015.11.006

[628] von Ehrenstein OS, Ling C, Cui X, Cockburn M, Park AS, Yu F, et al.. Prenatal and Infant Exposure to Ambient Pesticides and Autism Spectrum Disorder in Children: Population Based Case-Control StudyBMJ (2019) 364:l962.   10.1136/bmj.l962

[629] Cattani D, De Liz Oliveira Cavalli VL, Heinz Rieg CE, Domingues JT, Dal-Cim T, Tasca CI, et al.. Mechanisms Underlying the Neurotoxicity Induced by Glyphosate-Based Herbicide in Immature Rat Hippocampus: Involvement of Glutamate ExcitotoxicityToxicology (2014) 320:34–45.   10.1016/j.tox.2014.03.001

[630] Argou-Cardozo I, Zeidán-Chuliá F. Clostridium Bacteria and Autism Spectrum Conditions: A Systematic Review and Hypothetical Contribution of Environmental Glyphosate LevelsMed Sci (2018) 6:29.   10.3390/medsci6020029 

[631] Mcbirney M, King SE, Pappalardo M, Houser E, Unkefer M, Nilsson E, et al.. Atrazine Induced Epigenetic Transgenerational Inheritance of Disease, Lean Phenotype and Sperm Epimutation Pathology BiomarkersPloS One (2017) 12:e0184306.   10.1371/journal.pone.0184306 

[632] (Amato AA et al, 6 January 2021) “Obesity and endocrine-disrupting chemicals.” Journal Endorine Connection Volume 10 Issue 2 page R87-R105 PMCID: PMC7983487 PMID: 33449914

[633] GBDO AA, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A, Marczak L, Mokdad AH, Moradi-Lakeh M.et alCollaboratorsNew England Journal of Medicine 2017. 377 13–27. ( 10.1056/NEJMoa1614362) 

[634] Flegal KM, Carroll MD, Kit BK, Ogden CL.Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010JAMA 2012. 307 491–497. ( 10.1001/jama.2012.39)

[635] Hales C, Carroll M, Fryar CD, Ogden CL.Prevalence of Obesity Among Adults and Youth: United States, 2015–2016. Hyattsville, MD: United States Department of Health & Human Services. Report 288 2017. 

[636] Imbernon M, Beiroa D, Vázquez MJ, Morgan DA, Veyrat-Durebex C, Porteiro B, Díaz-Arteaga A, Senra A, Busquets S, Velásquez DAet al. Central melanin-concentrating hormone influences liver and adipose metabolism via specific hypothalamic nuclei and efferent autonomic/JNK1 pathwaysGastroenterology 2013. 144 636–649.e6. ( 10.1053/j.gastro.2012.10.051) 

[637] Martin JM, Miranda RA, Barella LF, Palma-Rigo K, Alves VS, Fabricio GS, Pavanello A, Franco CC, Ribeiro TA, Visentainer JVet al. Maternal Diet Supplementation with n-6/n-3 Essential Fatty Acids in a 1.2 : 1.0 Ratio Attenuates Metabolic Dysfunction in MSG-Induced Obese MiceInternational Journal of Endocrinology 2016. 2016 9242319. ( 10.1155/2016/9242319) 

[638] Jin YJ, Cao PJ, Bian WH, Li ME, Zhou R, Zhang LY, Yang MZ.BDNF levels in adipose tissue and hypothalamus were reduced in mice with MSG-induced obesityNutritional Neuroscience 2015. 18 376–382. ( 10.1179/1476830515Y.0000000039)

[639] Yulyaningsih E, Rudenko IA, Valdearcos M, Dahlén E, Vagena E, Chan A, Alvarez-Buylla A, Vaisse C, Koliwad SK, Xu AW.Acute lesioning and rapid repair of hypothalamic neurons outside the blood-brain barrierCell Reports 2017. 19 2257–2271. ( 10.1016/j.celrep.2017.05.060)

[640] Ren X-M, Blumberg B.Agrochemicals and obesityMolecular and Cellular Endocrinology in press. 2020. 

[641] Ogden CL, Carroll MD, Kit BK, Flegal KM.Prevalence of childhood and adult obesity in the United States, 2011–2012JAMA 2014. 311 806–814. ( 10.1001/jama.2014.732)

 [642] Ludwig DS, Ebbeling CB.The carbohydrate-insulin model of obesity: beyond "calories in, calories out"JAMA Internal Medicine 2018. 178 1098–1103. ( 10.1001/jamainternmed.2018.2933)

[643] Heini AF, Weinsier RL.Divergent trends in obesity and fat intake patterns: the American paradoxAmerican Journal of Medicine 1997. 102 259–264. ( 10.1016/S0002-9343(9600456-1)

[644] Cohen E, Cragg M, deFonseka J, Hite A, Rosenberg M, Zhou B.Statistical review of US macronutrient consumption data, 1965–2011: Americans have been following dietary guidelines, coincident with the rise in obesityNutrition 2015. 31 727–732. ( 10.1016/j.nut.2015.02.007)

[645] Shan Z, Rehm CD, Rogers G, Ruan M, Wang DD, Hu FB, Mozaffarian D, Zhang FF, Bhupathiraju SN.Trends in dietary carbohydrate, protein, and fat intake and diet quality Among US adults, 1999–2016JAMA 2019. 322 1178–1187. ( 10.1001/jama.2019.13771)

[646] Maes HHM, Neale MC, Eaves LJ.Genetic and environmental factors in relative body weight and human adiposityBehavior Genetics 1997. 27 325–351. ( 10.1023/a:1025635913927)

[647] Heindel JJ, Blumberg B, Cave M, Machtinger R, Mantovani A, Mendez MA, Nadal A, Palanza P, Panzica G, Sargis R, et alMetabolism disrupting chemicals and metabolic disordersReproductive Toxicology 2017. 68 3–33. ( 10.1016/j.reprotox.2016.10.001) 

[648] Torres SJ, Nowson CA.Relationship between stress, eating behavior, and obesityNutrition 2007. 23 887–894. ( 10.1016/j.nut.2007.08.008)

[649] Zhang X, Zhao H, Chow WH, Bixby M, Durand C, Markham C, Zhang K.Population-based study of traffic-related air pollution and obesity in Mexican AmericansObesity 2020. 28 412–420. ( 10.1002/oby.22697)

[650] Ahmadian M, Duncan RE, Jaworski K, Sarkadi-Nagy E, Sul HS.Triacylglycerol metabolism in adipose tissueFuture Lipidology 2007. 2 229–237. ( 10.2217/17460875.2.2.229) 

[651] Hausman DB, DiGirolamo M, Bartness TJ, Hausman GJ, Martin RJ.The biology of white adipocyte proliferationObesity Reviews 2001. 2 239–254. ( 10.1046/j.1467-789x.2001.00042.x)

[652] Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, Blomqvist L, Hoffstedt J, Naslund E, Britton T.et alDynamics of fat cell turnover in humansNature 2008. 453 783–787. ( 10.1038/nature06902)

[653] White U, Ravussin E.Dynamics of adipose tissue turnover in human metabolic health and diseaseDiabetologia 2019. 62 17–23. ( 10.1007/s00125-018-4732-x)

[654] Carsley S, Tu K, Parkin PC, Pullenayegum E, Birken CS.Overweight and obesity in preschool aged children and risk of mental health service utilizationInternational Journal of Obesity 2019. 43 1325–1333. ( 10.1038/s41366-018-0280-1)

[655] Dixon JB.The effect of obesity on health outcomesMolecular and Cellular Endocrinology 2010. 316 104–108. ( 10.1016/j.mce.2009.07.008)

[656] Cawley J, Meyerhoefer C.The medical care costs of obesity: an instrumental variables approachJournal of Health Economics 2012. 31 219–230. ( 10.1016/j.jhealeco.2011.10.003)

[657] Ornoy A.Prenatal origin of obesity and their complications: gestational diabetes, maternal overweight and the paradoxical effects of fetal growth restriction and macrosomiaReproductive Toxicology 2011. 32 205–212. ( 10.1016/j.reprotox.2011.05.002)

[658] Park S, Jang A, Bouret SG.Maternal obesity-induced endoplasmic reticulum stress causes metabolic alterations and abnormal hypothalamic development in the offspringPLOS Biology 2020. 18 e3000296. ( 10.1371/journal.pbio.3000296)

[659] Zoeller RT, Brown TR, Doan LL, Gore AC, Skakkebaek NE, Soto AM, Woodruff TJ, Vom Saal FS.Endocrine-disrupting chemicals and public health protection: a statement of principles from the Endocrine SocietyEndocrinology 2012. 153 4097–4110. ( 10.1210/en.2012-1422) 

[660] La Merrill MA, Vandenberg LN, Smith MT, Goodson W, Browne P, Patisaul HB, Guyton KZ, Kortenkamp A, Cogliano VJ, Woodruff TJ.et alConsensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identificationNature Reviews. Endocrinology 2020. 16 45–57. ( 10.1038/s41574-019-0273-8) 

[661] (Schimpf MG et al, January 2021) “Disruption of developmental programming with long-term consequences after exposure to a glyphosate-based herbicide in a rat model.” Journal Food Chem Toxicology PMID: 34813928 https://pubmed.ncbi.nlm.nih.gov › ...

[662] (Zhang C et al, August 2020) “Molecular Basis for endocrine Disruption by Pesticides targeting Aromatase and Estrogen Receptor.” International Journal Res Public Health Volume 17 Issue 16 page 5664 PMID: 32764486
https://pubmed.ncbi.nlm.nih.gov › ...

[663] Mie A., Andersen H.R., Gunnarsson S., Kahl J., Kesse-Guyot E., Rembiałkowska E., Quaglio G., Grandjean P. Human health implications of organic food and organic agriculture: A comprehensive review. Environ. Health. 2017;16:111. doi: 10.1186/s12940-017-0315-4. - DOI 

[664] Prüss-Ustün A., Vickers C., Haefliger P., Bertollini R. Knowns and unknowns on burden of disease due to chemicals: A systematic review. Environ. Health. 2011;10:9. doi: 10.1186/1476-069X-10-9. - DOI 

[665] Kortenkamp A., Faust M., Scholze M., Backhaus T. Low-level exposure to multiple chemicals: Reason for human health concerns? Environ. Health Perspect. 2007;115:106–114. doi: 10.1289/ehp.9358.

[666]Yang M., Park M.S., Lee H.S. Endocrine disrupting chemicals: Human exposure and health Risks. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2006;24:183–224. doi: 10.1080/10590500600936474.

[667] Vandenberg L.N., Colborn T., Hayes T.B., Heindel J.J., Jacobs D.R., Lee D.H., Shioda T., Soto A.M., Vom S.F., Welshons W.V., et al. Hormones and endocrine-disrupting chemicals: Low-dose effects and nonmonotonic dose responses. Endocr. Rev. 2012;33:378–455. doi: 10.1210/er.2011-1050. 

[668] Takayanagi S., Tokunaga T., Liu X., Okada H., Matsushima A., Shimohigashi Y. Endocrine disruptor bisphenol A strongly binds to human estrogen-related receptor γ (ERRγ) with high constitutive activity. Toxicol. Lett. 2006;167:95–105. doi: 10.1016/j.toxlet.2006.08.012.

[669] Mnif W., Hassine A.I.H., Bouaziz A., Bartegi A., Thomas O., Roig B. Effect of endocrine disruptor Pesticides: A Review. Int. J. Environ. Res. Public Health. 2011;8:2265–2303. doi: 10.3390/ijerph8062265.

[670] Storck V., Karpouzas D.G., Martin-Laurent F. Towards a better pesticide policy for the European Union. Sci. Total Environ. 2017;575:1027–1033. doi: 10.1016/j.scitotenv.2016.09.167.

[671] Hamadani J.D., Tofail F., Nermell B., Gardner R., Shiraji S., Bottai M., Arifeen S.E., Huda S.N., Vahter M. Critical windows of exposure for arsenic-associated impairment of cognitive function in pre-school girls and boys: A population-based cohort study. Int. J. Epidemiol. 2011;40:1593–1604. 

[672] Murphy E.A., Aucott M. An assessment of the amounts of arsenical pesticide used historically in a geographic area. Sci. Total Environ. 1998;218:89–101. doi: 10.1016/S0048-9697(98)00180-6.

[673] Quazi S., Sarkar D., Datta R. Human health risk from arsenical pesticide contaminated soils: A long-term greenhouse study. J. Hazard. Mater. 2013;262:1031–1038. doi: 10.1016/j.jhazmat.2012.10.027. 

[674] Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158:705–21.

[675] Kohanski MA, DePristo MA, Collins JJ. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell. 2010;37:311–20.

[676] Micek ST, Lloyd AE, Ritchie DJ, Reichley RM, Fraser VJ, Kollef MH. Pseudomonas aeruginosa bloodstream infection: Importance of appropriate initial antimicrobial treatment. Antimicrob Agents Chemother. 2005;49:1306–11.

[677] Wichmann F, Udikovic-Kolic N, Andrew S, Handelsmana J. Diverse antibiotic resistance genes in dairy cow manure. MBio. 2014;5:e01017. 

[678] (Samsel A and Seneff S, March 2015) “Glyphosate, pathways to modern diseases III: Manganese, neurological diseases and associated pathologies.” Journal Surgical Neurology International Volume 6 Issue 45 PMCID: PMC4392553 PMID: 25883837

[679]Murri M, Leiva I, Gamez-Zumaquero JM, Tinahones FJ, Cardona F, Soriguer F, et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children: A case-control study. BMC Med. 2013;11:46. 

[680] Shehata AA, Schrödl W, Aldin AA, Hafez HM, Krüger M. The effect of glyphosate on potential pathogens and beneficial members of poultry microbiota in vitroCurr Microbiol. 2013;66:350–8.

[681] Knaggs AR. The Biosynthesis of Shikimate MetabolitesNat Prod Rep (2001) 18:334–55. Doi 10.1039/b001717p

[682] Amrhein N., Deus B., Gehrke P., Steinrücken H.C. The Site of the Inhibition of the Shikimate Pathway by glyphosate: ii. interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiol. 1980;66:830–834. doi: 10.1104/pp.66.5.830.

[683] Herrmann K.M., Weaver L.M. The Shikimate Pathway. Annu. Rev. Plant Phys. 1999;50:473–503. doi: 10.1146/annurev.arplant.50.1.473.

[684] Singh S, Kumar V, Gill JPK, Datta S, Singh S, Dhaka V, et al.. Herbicide Glyphosate: Toxicity and Microbial DegradationInt J Environ Res Public Health (2020) 17:7519.   10.3390/ijerph17207519 

[685] Nielsen LN, Roager HM, Casas ME, Frandsen HL, Gosewinkel U, Bester K, et al.. Glyphosate has Limited Short-Term Effects on Commensal Bacterial Community Composition in the Gut Environment Due to Sufficient Aromatic Amino Acid LevelsEnviron Pollut (2018) 233:364–76.   10.1016/j.envpol.2017.10.016

[686] Krause JL, Haange SB, Schäpe SS, Engelmann B, Rolle-Kampczyk U, Fritz-Wallace K, et al.. The Glyphosate Formulation Roundup® LB Plus Influences the Global Metabolome of Pig Gut Microbiota In Vitro Sci Total Environ (2020) 745:140932.   10.1016/j.scitotenv.2020.140932

[687] Mesnage R, Teixeira M, Mandrioli D, Falcioni L, Ducarmon QR, Zwittink RD, et al.. Use of Shotgun Metagenomics and Metabolomics to Evaluate the Impact of Glyphosate or Roundup MON 52276 on the Gut Microbiota and Serum Metabolome of Sprague Dawley RatsEnviron Health Perspect (2021) 129:17005.   10.1289/EHP6990 

[688] Tilg H, Kaser A.Gut microbiome, obesity, and metabolic dysfunctionJournal of Clinical Investigation 2011. 121 2126–2132. ( 10.1172/JCI58109)

[689] Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI.An obesity-associated gut microbiome with increased capacity for energy harvestNature 2006. 444 1027–1031. ( 10.1038/nature05414)

[690] Rueda-Ruzafa L., Cruz F., Roman P., Cardona D. Gut microbiota and neurological effects of glyphosate. Neurotoxicology. 2019;75:1–8. doi: 10.1016/j.neuro.2019.08.006. 

[691] Gillott A. Anxiety in high-functioning children with autism. Autism. 2001;5:277–86.

[692] Richard IH. Anxiety disorders in Parkinson'S disease. Adv Neurol. 2005;96:42–55.

[693] Teri L, Ferretti LE, Gibbons LE, Logsdon RG, McCurry SM, Kukull WA, et al. Anxiety in Alzheimer'S disease: Prevalence and co morbidity. J Gerontol A Biol Sci Med Sci. 1999;54:M348–52. 

[694] Huber D. What about glyphosate-induced manganese deficiency? Fluid J. 2007:20–22. 

[695] Hollick MF, Chen TC. Vitamin D deficiency a worldwide problem with health consequences. Am J Clin Nutr. 2008;87:10805–68.

[696] Bodnar LM, Klebanoff MA, Gernand AD, Platt RW, Parks WT, Catov JM, et al. Maternal Vitamin D status and spontaneous preterm birth by placental histology in the US Collaborative Perinatal Project. Am J Epidemiol. 2014;179:168–76.

[697] Keller KA, Barnes PD. Rickets vs abuse: A national and international epidemic. Pediatr Radiol. 2008;38:1210–6.

[698] Seeley M. Unexplained fractures in infants and child abuse: The case for requiring bone-density testing before convicting caretakers. BYU Law Rev 2011. 2011. [Last accessed on 2014 Sep 10]. 2321. Available from: http://digitalcommons.law.byu.edu/lawreview/vol2011/iss6/13 

[699] Kannus P, Palvanen M, Niemi S, Parkkari J, Järvinen M, Ilkka Vuori I. Osteoporotic fractures of the proximal humerus in elderly Finnish persons: Sharp increase in 1970-1998 and alarming projections for the new millennium. Acta Orthop Scand. 2000;71:465–70. 

[700]Kannus P, Parkkari J, Sievnen H, Heinonen A, Vuori I, Järvinen M. Epidemiology of hip fractures. Bone. 1996;18(Suppl 1):557–63. 

[701]Samsel A, Seneff S. Glyphosate'S suppression of cytochrome P450 enzymes and amino acid biosynthesis by the gut microbiome: Pathways to modern diseases. Entropy. 2013;15:1416–63. 

 [702] Samsel A, Seneff S. Glyphosate, pathways to modern diseases II: Celiac sprue and gluten intolerance. Interdiscip Toxicol. 2013;6:159–84.

[703]  Leach RM, Jr, Muenster AM, Wien EM. Studies on the role of manganese in bone formation: II. Effect upon chondroitin sulfate synthesis in chick epiphyseal cartilage. Arch Biochem Biophys. 1969;133:22–8.

[704] Bolze MS, Reeves RD, Lindbeck FE, Kemp SF, Elders MJ. Influence of manganese on growth, somatomedin and glycosaminoglycan metabolism. J Nutr. 1985;115:352–8